Suppr超能文献

利用机器学习技术预测急性甲醇中毒的预后。

Prediction of acute methanol poisoning prognosis using machine learning techniques.

机构信息

Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Computer Engineering and Information Technology (PNU), Tehran, Iran.

出版信息

Toxicology. 2024 May;504:153770. doi: 10.1016/j.tox.2024.153770. Epub 2024 Mar 6.

Abstract

Methanol poisoning is a global public health concern, especially prevalent in developing nations. This study focuses on predicting the severity of methanol intoxication using machine learning techniques, aiming to improve early identification and prognosis assessment. The study, conducted at Loghman Hakim Hospital in Tehran, Iran. The data pertaining to individuals afflicted with methanol poisoning was retrieved retrospectively and divided into training and test groups at a ratio of 70:30. The selected features were then inputted into various machine learning methods. The models were implemented using the Scikit-learn library in the Python programming language. Ultimately, the efficacy of the developed models was assessed through ten-fold cross-validation techniques and specific evaluation criteria, with a confidence level of 95%. A total number of 897 patients were included and divided in three groups including without sequel (n = 573), with sequel (n = 234), and patients who died (n = 90). The two-step feature selection was yielded 43 features in first step and 23 features in second step. In best model (Gradient Boosting Classifier) test dataset metric by 32 features younger age, higher methanol ingestion, respiratory symptoms, lower GCS scores, type of visual symptom, duration of therapeutic intervention, ICU admission, and elevated CPK levels were among the most important features predicting the prognosis of methanol poisoning. The Gradient Boosting Classifier demonstrated the highest predictive capability, achieving AUC values of 0.947 and 0.943 in the test dataset with 43 and 23 features, respectively. This research introduces a machine learning-driven prognostic model for methanol poisoning, demonstrating superior predictive capabilities compared to traditional statistical methods. The identified features provide valuable insights for early intervention and personalized treatment strategies.

摘要

甲醇中毒是一个全球性的公共卫生问题,尤其在发展中国家更为普遍。本研究旨在利用机器学习技术预测甲醇中毒的严重程度,以期改善早期识别和预后评估。该研究在伊朗德黑兰的 Loghman Hakim 医院进行。研究人员回顾性地检索了甲醇中毒患者的数据,并将其分为训练组和测试组,比例为 70:30。然后将选定的特征输入到各种机器学习方法中。模型使用 Python 编程语言中的 Scikit-learn 库实现。最终,通过十折交叉验证技术和特定的评估标准(置信水平为 95%)评估所开发模型的效能。共纳入 897 例患者,分为无后遗症组(n=573)、有后遗症组(n=234)和死亡组(n=90)。两步特征选择法在第一步中得到了 43 个特征,在第二步中得到了 23 个特征。在最佳模型(梯度提升分类器)中,测试数据集的指标显示,年龄较小、甲醇摄入量较高、有呼吸症状、GCS 评分较低、视觉症状类型、治疗干预持续时间、入住 ICU 和 CPK 水平升高等 32 个特征是预测甲醇中毒预后的最重要特征。梯度提升分类器表现出最高的预测能力,在测试数据集分别使用 43 个和 23 个特征时,AUC 值分别达到 0.947 和 0.943。本研究引入了一种基于机器学习的甲醇中毒预后模型,与传统统计方法相比,具有更高的预测能力。所确定的特征为早期干预和个性化治疗策略提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验