Suppr超能文献

基于机器学习的预测模型评估自发性脑出血患者 90 天预后结局的开发与验证。

Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage.

机构信息

Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.

Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.

出版信息

J Transl Med. 2024 Mar 4;22(1):236. doi: 10.1186/s12967-024-04896-3.

Abstract

BACKGROUND

Spontaneous intracerebral hemorrhage (sICH) is associated with significant mortality and morbidity. Predicting the prognosis of patients with sICH remains an important issue, which significantly affects treatment decisions. Utilizing readily available clinical parameters to anticipate the unfavorable prognosis of sICH patients holds notable clinical significance. This study employs five machine learning algorithms to establish a practical platform for the prediction of short-term prognostic outcomes in individuals afflicted with sICH.

METHODS

Within the framework of this retrospective analysis, the model underwent training utilizing data gleaned from 413 cases from the training center, with subsequent validation employing data from external validation center. Comprehensive clinical information, laboratory analysis results, and imaging features pertaining to sICH patients were harnessed as training features for machine learning. We developed and validated the model efficacy using all the selected features of the patients using five models: Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), XGboost and LightGBM, respectively. The process of Recursive Feature Elimination (RFE) was executed for optimal feature screening. An internal five-fold cross-validation was employed to pinpoint the most suitable hyperparameters for the model, while an external five-fold cross-validation was implemented to discern the machine learning model demonstrating the superior average performance. Finally, the machine learning model with the best average performance is selected as our final model while using it for external validation. Evaluation of the machine learning model's performance was comprehensively conducted through the utilization of the ROC curve, accuracy, and other relevant indicators. The SHAP diagram was utilized to elucidate the variable importance within the model, culminating in the amalgamation of the above metrics to discern the most succinct features and establish a practical prognostic prediction platform.

RESULTS

A total of 413 patients with sICH patients were collected in the training center, of which 180 were patients with poor prognosis. A total of 74 patients with sICH were collected in the external validation center, of which 26 were patients with poor prognosis. Within the training set, the test set AUC values for SVM, LR, RF, XGBoost, and LightGBM models were recorded as 0.87, 0.896, 0.916, 0.885, and 0.912, respectively. The best average performance of the machine learning models in the training set was the RF model (average AUC: 0.906 ± 0.029, P < 0.01). The model still maintains a good performance in the external validation center, with an AUC of 0.817 (95% CI 0.705-0.928). Pertaining to feature importance for short-term prognostic attributes of sICH patients, the NIHSS score reigned supreme, succeeded by AST, Age, white blood cell, and hematoma volume, among others. In culmination, guided by the RF model's variable importance weight and the model's ROC curve insights, the NIHSS score, AST, Age, white blood cell, and hematoma volume were integrated to forge a short-term prognostic prediction platform tailored for sICH patients.

CONCLUSION

We constructed a prediction model based on the results of the RF model incorporating five clinically accessible predictors with reliable predictive efficacy for the short-term prognosis of sICH patients. Meanwhile, the performance of the external validation set was also more stable, which can be used for accurate prediction of short-term prognosis of sICH patients.

摘要

背景

自发性脑出血(sICH)与较高的死亡率和发病率相关。预测 sICH 患者的预后仍然是一个重要问题,这显著影响治疗决策。利用现成的临床参数来预测 sICH 患者的不良预后具有重要的临床意义。本研究使用五种机器学习算法来建立一个实用的平台,用于预测 sICH 患者的短期预后结果。

方法

在这项回顾性分析中,该模型使用来自培训中心的 413 例患者的数据进行训练,随后使用外部验证中心的数据进行验证。综合临床信息、实验室分析结果和 sICH 患者的影像学特征被用作机器学习的训练特征。我们使用所有选定的患者特征,分别使用支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)、XGboost 和 LightGBM 开发和验证模型效能。使用递归特征消除(RFE)进行最优特征筛选。采用内部五折交叉验证为模型确定最合适的超参数,采用外部五折交叉验证确定具有最佳平均性能的机器学习模型。最后,选择具有最佳平均性能的机器学习模型作为最终模型,并在外部验证中使用。使用 ROC 曲线、准确性和其他相关指标全面评估机器学习模型的性能。使用 SHAP 图阐明模型内的变量重要性,最终综合上述指标确定最简洁的特征并建立实用的预后预测平台。

结果

在培训中心共收集了 413 例 sICH 患者,其中 180 例预后不良。在外部验证中心共收集了 74 例 sICH 患者,其中 26 例预后不良。在训练集中,SVM、LR、RF、XGBoost 和 LightGBM 模型的测试集 AUC 值分别为 0.87、0.896、0.916、0.885 和 0.912。在训练集中,机器学习模型的最佳平均性能是 RF 模型(平均 AUC:0.906±0.029,P<0.01)。该模型在外部验证中心仍然保持良好的性能,AUC 为 0.817(95%CI 0.705-0.928)。关于 sICH 患者短期预后属性的特征重要性,NIHSS 评分位居榜首,其次是 AST、年龄、白细胞和血肿量等。最终,根据 RF 模型的变量重要性权重和模型的 ROC 曲线洞察,整合 NIHSS 评分、AST、年龄、白细胞和血肿量,为 sICH 患者建立了一个短期预后预测平台。

结论

我们基于 RF 模型的结果构建了一个预测模型,该模型纳入了五个临床可及的预测因子,对 sICH 患者的短期预后具有可靠的预测效果。同时,外部验证集的性能也更加稳定,可用于准确预测 sICH 患者的短期预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f99d/10910789/4e73b58efd51/12967_2024_4896_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验