Suppr超能文献

用于高面积容量锂硫全电池的过渡金属氮化物异质结反键态电子填充和轨道占据调控

Regulating Electron Filling and Orbital Occupancy of Anti-Bonding States of Transition Metal Nitride Heterojunction for High Areal Capacity Lithium-Sulfur Full Batteries.

作者信息

Liu Jintao, Yu Lianghao, Ran Qiwen, Chen Xi'an, Wang Xueyu, He Xuedong, Jin Huile, Chen Tao, Chen Jun Song, Guo Daying, Wang Shun

机构信息

Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.

School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.

出版信息

Small. 2024 Aug;20(31):e2311750. doi: 10.1002/smll.202311750. Epub 2024 Mar 8.

Abstract

The commercialization of lithium-sulfur (Li-S) battery is seriously hindered by the shuttle behavior of lithium (Li) polysulfide, slow conversion kinetics, and Li dendrite growth. Herein, a novel hierarchical p-type iron nitride and n-type vanadium nitride (p-FeN/n-VN) heterostructure with optimal electronic structure, confined in vesicle-like N-doped nanofibers (p-FeN/n-VN⊂PNCF), is meticulously constructed to work as "one stone two birds" dual-functional hosts for both the sulfur cathode and Li anode. As demonstrated, the d-band center of high-spin Fe atom captures more electrons from V atom to realize more π* and moderate σ* bond electron filling and orbital occupation; thus, allowing moderate adsorption intensity for polysulfides and more effective d-p orbital hybridization to improve reaction kinetics. Meanwhile, this unique structure can dynamically balance the deposition and transport of Li on the anode; thereby, more effectively inhibiting Li dendrite growth and promoting the formation of a uniform solid electrolyte interface. The as-assembled Li-S full batteries exhibit the conspicuous capacities and ultralong cycling lifespan over 2000 cycles at 5.0 C. Even at a higher S loading (20 mg cm) and lean electrolyte (2.5 µL mg), the full cells can still achieve an ultrahigh areal capacity of 16.1 mAh cm after 500 cycles at 0.1 C.

摘要

锂硫(Li-S)电池的商业化受到多硫化锂的穿梭行为、缓慢的转化动力学以及锂枝晶生长的严重阻碍。在此,精心构建了一种具有最佳电子结构的新型分级p型氮化铁和n型氮化钒(p-FeN/n-VN)异质结构,该结构被限制在囊泡状氮掺杂纳米纤维(p-FeN/n-VN⊂PNCF)中,作为硫正极和锂负极的“一石二鸟”双功能主体。结果表明,高自旋铁原子的d带中心从钒原子捕获更多电子,以实现更多的π和适度的σ键电子填充及轨道占据;因此,对多硫化物具有适度的吸附强度,并能进行更有效的d-p轨道杂化以改善反应动力学。同时,这种独特的结构可以动态平衡锂在负极上的沉积和传输;从而更有效地抑制锂枝晶生长,并促进均匀固体电解质界面的形成。组装后的Li-S全电池在5.0 C下表现出显著的容量和超过2000次循环的超长循环寿命。即使在更高的硫负载量(20 mg cm)和贫电解质(2.5 µL mg)条件下,全电池在0.1 C下经过500次循环后仍能实现16.1 mAh cm的超高面积容量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验