Suppr超能文献

突变景观和分子动力学揭示的紫杉烯合酶催化和多功能性。

Insights into taxadiene synthase catalysis and promiscuity facilitated by mutability landscape and molecular dynamics.

机构信息

Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.

Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.

出版信息

Planta. 2024 Mar 9;259(4):87. doi: 10.1007/s00425-024-04363-9.

Abstract

Protein modeling, carbocation docking, and molecular dynamics along with structure-based mutability landscapes provided insight into taxadiene synthase catalysis (first step of the anticancer Taxol biosynthesis), protein structure-function correlations, and promiscuity. Plant terpenes belong to one of the largest and most diverse classes of natural products. This diversity is driven by the terpene synthase enzyme family which comprises numerous different synthases, several of which are promiscuous. Taxadiene synthase (TXS) is a class I diterpene synthase that catalyzes the first step in the biosynthesis pathway of the diterpene Taxol, an anticancer natural product produced by the Taxus plant. Exploring the molecular basis of TXS catalysis and its promiscuous potential garnered interest as a necessary means for understanding enzyme evolution and engineering possibilities to improve Taxol biosynthesis. A catalytically active closed conformation TXS model was designed using the artificial intelligence system, AlphaFold, accompanied by docking and molecular dynamics simulations. In addition, a mutability landscape of TXS including 14 residues was created to probe for structure-function relations. The mutability landscape revealed no mutants with improved catalytic activity compared to wild-type TXS. However, mutations of residues V584, Q609, V610, and Y688 showed high degree of promiscuity producing cembranoid-type and/or verticillene-type major products instead of taxanes. Mechanistic insights into V610F, V584M, Q609A, and Y688C mutants compared to the wild type revealed the trigger(s) for product profile change. Several mutants spanning residues V584, Q609, Y688, Y762, Q770, and F834 increased production of taxa-4(20),11(12)-diene which is a more favorable substrate for Taxol production compared to taxa-4(5),11(12)-diene. Finally, molecular dynamics simulations of the TXS reaction cascade revealed residues involved in ionization, carbocation stabilization, and cyclization ushering deeper understanding of the enzyme catalysis mechanism.

摘要

蛋白质建模、碳正离子对接、分子动力学以及基于结构的可变性景观提供了对 taxadiene 合酶催化(抗癌紫杉醇生物合成的第一步)、蛋白质结构-功能相关性和多功能性的深入了解。植物萜烯属于最大和最多样化的天然产物之一。这种多样性是由萜烯合酶酶家族驱动的,该家族包含许多不同的合酶,其中有几个是多功能的。Taxadiene 合酶(TXS)是一种 I 类二萜合酶,催化二萜紫杉醇生物合成途径的第一步,紫杉醇是一种抗癌天然产物,由 Taxus 植物产生。探索 TXS 催化的分子基础及其多功能性潜力引起了人们的兴趣,因为这是理解酶进化和工程可能性以提高紫杉醇生物合成的必要手段。使用人工智能系统 AlphaFold 设计了一种具有催化活性的封闭构象 TXS 模型,并进行了对接和分子动力学模拟。此外,还创建了一个包含 14 个残基的 TXS 可变性景观,以探测结构-功能关系。可变性景观显示,与野生型 TXS 相比,没有突变体具有提高的催化活性。然而,V584、Q609、V610 和 Y688 残基的突变显示出高度的多功能性,产生了cembranoid 型和/或 verticillene 型主要产物,而不是紫杉烷。与野生型相比,对 V610F、V584M、Q609A 和 Y688C 突变体的机制洞察揭示了触发产物谱变化的因素。跨越 V584、Q609、Y688、Y762、Q770 和 F834 残基的几个突变体增加了 taxa-4(20),11(12)-diene 的产量,与 taxa-4(5),11(12)-diene 相比,这是一种更有利于 Taxol 生产的底物。最后,TXS 反应级联的分子动力学模拟揭示了参与离子化、碳正离子稳定化和环化的残基,从而更深入地了解了酶催化机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccff/10924717/8fcfcb8636ca/425_2024_4363_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验