Gong Yangyang, Zhang Pengtao, Fan Shuang, Cai Minghui, Hu Jiangtao, Luo Zhaoyan, Mi Hongwei, Jiang Xiantao, Zhang Qianling, Ren Xiangzhong
College of Chemistry and Environmental Engineering, International Joint Research Center for Molecular Science, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
College of Chemistry and Environmental Engineering, International Joint Research Center for Molecular Science, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
J Colloid Interface Sci. 2024 Jun 15;664:168-177. doi: 10.1016/j.jcis.2024.03.025. Epub 2024 Mar 6.
Ammonium vanadate with stable bi-layered structure and superior mass-specific capacity have emerged as competitive cathode materials for aqueous rechargeable zinc-ion batteries (AZIBs). Nevertheless, fragile NH…O bonds and too strong electrostatic interaction by virtue of excessive NH will lead to sluggish Zn ion mobility, further largely affects the electro-chemical performance of ammonium vanadate in AZIBs. The present work incorporates polypyrrole (PPy) to partially replace NH in NHVO (NVO), resulting in the significantly enlarged interlayers (from 10.1 to 11.9 Å), remarkable electronic conductivity, increased oxygen vacancies and reinforced layered structure. The partial removal of NH will alleviate the irreversible deammoniation to protect the laminate structures from collapse during ion insertion/extraction. The expanded interlayer spacing and the increased oxygen vacancies by the virtue of the introduction of polypyrrole improve the ionic diffusion, enabling exceptional rate performance of NHVO. As expected, the resulting polypyrrole intercalated ammonium vanadate (NVOY) presents a superior discharge capacity of 431.9 mAh g at 0.5 A g and remarkable cycling stability of 219.1 mAh g at 20 A g with 78 % capacity retention after 1500 cycles. The in-situ electrochemical impedance spectroscopy (EIS), in-situ X-ray diffraction (XRD), ex-situ X-ray photoelectron spectroscopy (XPS) and ex-situ high resolution transmission electron microscopy (HR-TEM) analysis investigate a highly reversible intercalation Zn-storage mechanism, and the enhanced the redox kinetics are related to the combined effect of interlayer regulation, high electronic conductivity and oxygen defect engineering by partial substitution NH of PPy incorporation.
具有稳定双层结构和优异质量比容量的钒酸铵已成为水系可充电锌离子电池(AZIBs)具有竞争力的正极材料。然而,脆弱的NH…O键以及由于过量NH导致的过强静电相互作用会导致锌离子迁移缓慢,进而极大地影响钒酸铵在AZIBs中的电化学性能。目前的工作引入聚吡咯(PPy)部分取代NHVO(NVO)中的NH,导致层间距显著增大(从10.1 Å增大到11.9 Å)、显著的电子导电性、增加的氧空位以及增强的层状结构。部分去除NH将减轻不可逆的脱氨作用,以保护层状结构在离子插入/脱出过程中不发生坍塌。由于引入聚吡咯而扩大的层间距和增加的氧空位改善了离子扩散,使NHVO具有出色的倍率性能。正如预期的那样,所得的聚吡咯插层钒酸铵(NVOY)在0.5 A g下具有431.9 mAh g的优异放电容量,在20 A g下具有219.1 mAh g的显著循环稳定性,在1500次循环后容量保持率为78%。原位电化学阻抗谱(EIS)、原位X射线衍射(XRD)、非原位X射线光电子能谱(XPS)和非原位高分辨率透射电子显微镜(HR-TEM)分析研究了高度可逆的插层式锌存储机制,并且增强的氧化还原动力学与层间调控、高电子导电性以及通过PPy掺入部分取代NH的氧缺陷工程的综合效应有关。