Han Wenzhe, Gao Xuan-Wen, Song Yingying, Wang Xuanchen, Gao Guoping, Chen Hong, Gu Qinfen, Luo Wen-Bin
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, China.
University of Dundee, Nethergate, Dundee, Scotland, DD1 4HN, UK.
Small. 2024 Aug;20(31):e2400252. doi: 10.1002/smll.202400252. Epub 2024 Mar 10.
Owing to the high economic efficiency and energy density potential, manganese-based layer-structured oxides have attracted great interests as cathode materials for potassium ion batteries. In order to alleviate the continuous phase transition and K re-embedding from Jahn-Teller distortion, the [Mn-Co-Mo]O octahedra are introduced into P3-KMnO herein to optimize the local electron structure. Based on the experimental and computational results, the octahedral center metal molybdenum in [MoO] octahedra proposes a smaller ionic radius and higher oxidation state to induce second-order JTE (pseudo-JTE) distortion in the adjacent [MnO] octahedra. This distortion compresses the [MnO] octahedra along the c-axis, leading to an increased interlayer spacing in the K layer. Meanwhile, the Mn/Mn is balanced by [CoO] octahedra and the K diffusion pathway is optimized as well. The proposed P3-KMnCoMoO cathode material shows an enhanced cycling stability and rate performance. It demonstrates a high capacity of 80.2 mAh g at 100 mAh g and 77.3 mAh g at 500 mAh g. Furthermore, it showcases a 2000 cycles stability with a 59.6% capacity retention. This work presents a promising solution to the challenges faced by manganese-based layered oxide cathodes and offers a deep mechanism understanding and improved electrochemical performance.
由于具有高经济效率和潜在的能量密度,锰基层状氧化物作为钾离子电池的阴极材料引起了广泛关注。为了缓解由 Jahn-Teller 畸变引起的连续相变和钾的重新嵌入,本文将 [Mn-Co-Mo]O 八面体引入到 P3-KMnO 中以优化局部电子结构。基于实验和计算结果,[MoO] 八面体中的八面体中心金属钼具有较小的离子半径和较高的氧化态,从而在相邻的 [MnO] 八面体中诱导二阶 JTE(伪 JTE)畸变。这种畸变沿 c 轴压缩 [MnO] 八面体,导致 K 层中层间距增加。同时,[CoO] 八面体平衡了 Mn/Mn,并且钾扩散途径也得到了优化。所提出的 P3-KMnCoMoO 阴极材料表现出增强的循环稳定性和倍率性能。在 100 mAh g 时它展现出 80.2 mAh g 的高容量,在 500 mAh g 时为 77.3 mAh g。此外,它展示了 2000 次循环的稳定性,容量保持率为 59.6%。这项工作为锰基层状氧化物阴极所面临的挑战提供了一个有前景的解决方案,并提供了深入的机理理解和改进的电化学性能。