Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Small. 2024 Aug;20(31):e2311016. doi: 10.1002/smll.202311016. Epub 2024 Mar 10.
The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.
利用廉价的缓冲液和电子供体(如有机酸或氢气),在环境条件下通过微生物(生物-Pd)中的酶还原 Pd(II) 到 Pd(0) 来实现 Pd 纳米粒子的生物合成。可持续的生物-Pd 催化剂对于 C-C 偶联和加氢反应是有效的,但由于控制纳米颗粒性质的挑战,其工业应用受到限制。在这里,使用金属还原细菌 Geobacter sulfurreducens,证明在不同的 Pd 负载和利用不同的电子供体(醋酸盐、甲酸盐、氢气、无电子供体)下合成生物-Pd 会影响关键性质,如纳米颗粒大小、Pd(II):Pd(0) 比和细胞位置。控制纳米颗粒的大小和位置控制生物-Pd 对 4-硝基苯酚还原的活性,而细胞上的高 Pd 负载合成的生物-Pd 具有高活性,可与商业 Pd/C 相媲美,用于 Suzuki-Miyaura 偶联反应。此外,该研究还证明了由于碳酸氢盐缓冲液中生物吸附的 Pd(II)的水解,可以新颖地合成微生物支持的≈2nm PdO 纳米颗粒。与商业 Pd/C 催化剂相比,生物-PdO 纳米颗粒在 4-硝基苯酚还原中表现出更高的活性。总的来说,控制生物合成参数,如电子供体、金属负载和溶液化学,可以调整生物-Pd 的物理化学和催化性质。