Suppr超能文献

生物合成参数控制微生物支持的钯纳米粒子的物理化学和催化性质。

Biosynthesis Parameters Control the Physicochemical and Catalytic Properties of Microbially Supported Pd Nanoparticles.

机构信息

Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

出版信息

Small. 2024 Aug;20(31):e2311016. doi: 10.1002/smll.202311016. Epub 2024 Mar 10.

Abstract

The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.

摘要

利用廉价的缓冲液和电子供体(如有机酸或氢气),在环境条件下通过微生物(生物-Pd)中的酶还原 Pd(II) 到 Pd(0) 来实现 Pd 纳米粒子的生物合成。可持续的生物-Pd 催化剂对于 C-C 偶联和加氢反应是有效的,但由于控制纳米颗粒性质的挑战,其工业应用受到限制。在这里,使用金属还原细菌 Geobacter sulfurreducens,证明在不同的 Pd 负载和利用不同的电子供体(醋酸盐、甲酸盐、氢气、无电子供体)下合成生物-Pd 会影响关键性质,如纳米颗粒大小、Pd(II):Pd(0) 比和细胞位置。控制纳米颗粒的大小和位置控制生物-Pd 对 4-硝基苯酚还原的活性,而细胞上的高 Pd 负载合成的生物-Pd 具有高活性,可与商业 Pd/C 相媲美,用于 Suzuki-Miyaura 偶联反应。此外,该研究还证明了由于碳酸氢盐缓冲液中生物吸附的 Pd(II)的水解,可以新颖地合成微生物支持的≈2nm PdO 纳米颗粒。与商业 Pd/C 催化剂相比,生物-PdO 纳米颗粒在 4-硝基苯酚还原中表现出更高的活性。总的来说,控制生物合成参数,如电子供体、金属负载和溶液化学,可以调整生物-Pd 的物理化学和催化性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验