Suppr超能文献

氢化酶介导的具有催化活性的铜纳米颗粒的生物合成。

Hydrogenase Mediated Biosynthesis of Catalytically Active Cu Nanoparticles.

作者信息

Byrd Natalie, Egan Morriss Christopher, Parker Joseph, Cai Rongsheng, Nunn Elliott J, van Wonderen Jessica H, Cavet Jennifer S, Parmeggiani Fabio, Kimber Richard L, Gralnick Jeffrey A, Clarke Thomas A, Haigh Sarah J, Lloyd Jonathan R

机构信息

Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK.

Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

出版信息

Small. 2025 Sep;21(35):e2500210. doi: 10.1002/smll.202500210. Epub 2025 Jul 14.

Abstract

Shewanella oneidensis MR-1 can biosynthesize cell-supported Cu-nanoparticles (CuNPs), via the bioreduction of Cu(II), with excellent catalytic activity for click chemistry reactions. However, enzymatic mechanisms underpinning Cu(II) bioreduction were unclear. Here, the oxidation of hydrogen as electron donor was essential for Cu(II) bioreduction by S. oneidensis and hydrogenase deletion mutants were used to demonstrate the critical role of the periplasmic [NiFe] hydrogenase, HyaB. Wild type (WT) cultured cells coupled hydrogen oxidation to biosynthesis of Cu(0)/Cu(I)-NPs within the periplasm (identified using XRD and TEM with SAED, EDS, EELS); ΔhyaB mutants did not produce CuNPs. Biosynthesized CuNPs were catalytically active for the cycloaddition of methyl azidoacetate and 1-hexyne, confirming the potential for microbial revalorization of Cu(II)-containing wastewaters, by forming catalytically active nanomaterials. Identifying HyaB, as a key mediator for Cu(II) reduction in S. oneidensis is an important first step towards developing industrial bioprocesses for Cu(II) recovery and CuNP synthesis, offering a template for improvements using engineering biology. Interestingly, c-type cytochromes, critical for reduction of other metals, were unable to fully reduce Cu(II) in vivo despite being capable of Cu(II) reduction under in vitro conditions. In fact, Cu inhibited outer membrane cytochrome mediated reduction of Pd(II), and this may impact bioreduction of mixed metal solutions/effluents.

摘要

奥奈达希瓦氏菌MR-1能够通过对Cu(II)的生物还原作用,生物合成细胞负载的铜纳米颗粒(CuNP),对点击化学反应具有出色的催化活性。然而,支撑Cu(II)生物还原的酶促机制尚不清楚。在此,以氢气作为电子供体的氧化反应对于奥奈达希瓦氏菌的Cu(II)生物还原至关重要,并且利用氢化酶缺失突变体来证明周质[NiFe]氢化酶HyaB的关键作用。野生型(WT)培养细胞将氢氧化与周质内Cu(0)/Cu(I)-NP的生物合成相偶联(使用XRD以及带有SAED、EDS、EELS的TEM进行鉴定);ΔhyaB突变体不产生CuNP。生物合成的CuNP对叠氮乙酸甲酯和1-己炔的环加成反应具有催化活性,这证实了通过形成具有催化活性的纳米材料,对含Cu(II)废水进行微生物再利用的潜力。确定HyaB作为奥奈达希瓦氏菌中Cu(II)还原的关键介质,是开发用于Cu(II)回收和CuNP合成的工业生物工艺的重要第一步,为利用工程生物学进行改进提供了模板。有趣的是,对其他金属还原至关重要的c型细胞色素,尽管在体外条件下能够还原Cu(II),但在体内却无法完全还原Cu(II)。事实上,Cu抑制了外膜细胞色素介导的Pd(II)还原,这可能会影响混合金属溶液/废水的生物还原。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验