Gomathi Abimannan, Priyadharsan Arumugam, Handayani Murni, Kumar K A Ramesh, Saranya K, Kumar A Senthil, Srividhya Balakrishnan, Murugesan K, Maadeswaran Palanisamy
Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India.
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India; Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 May 15;313:124125. doi: 10.1016/j.saa.2024.124125. Epub 2024 Mar 6.
In this research work, we have successfully synthesized the CeO/CoO/g-CN ternary nanocomposite for hydrothermal method for photocatalytic applications. The synthesized nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy TEM, Photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer- Emmett-Teller (BET) and Ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. As per the optical spectroscopic investigations CeO/CoO/g-CN ternary nanocomposite exhibited the high optical absorption range and its band gap is reduced from 2.95 eV to1.83 eV. The PL spectra showed the lowered emission peak intensity of ternary nanocomposite which is revealed that the better charge separation and slow recombination of electron hole pairs. The highest photocatalytic degradation efficiency of CeO/CoO/g-CN ternary nanocomposite showed 93 % and 86 % towards the pollutant methylene blue and Rhodamine B. Moreover, photodegradation of the pollutants followed pseudo-first order kinetics with a very high-rate constant of 0.02211 min and 0.017756 min. Additionally, the ternary nano catalyst was delivered the remarkable stability performance even after five cycles. This research may provide a low-cost approach for synthesized visible light responsive catalysts for use in environmental remediation applications.
在本研究工作中,我们通过水热法成功合成了用于光催化应用的CeO/CoO/g-CN三元纳米复合材料。使用X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、光致发光光谱(PL)、X射线光电子能谱(XPS)、布鲁诺尔-埃米特-泰勒(BET)和紫外漫反射光谱(UV-DRS)技术对合成的纳米复合材料进行了表征。根据光谱学研究,CeO/CoO/g-CN三元纳米复合材料表现出高光学吸收范围,其带隙从2.95 eV降低到1.83 eV。PL光谱显示三元纳米复合材料的发射峰强度降低,这表明电子空穴对具有更好的电荷分离和缓慢复合。CeO/CoO/g-CN三元纳米复合材料对污染物亚甲基蓝和罗丹明B的最高光催化降解效率分别为93%和86%。此外,污染物的光降解遵循准一级动力学,速率常数非常高,分别为0.02211 min⁻¹和0.017756 min⁻¹。此外,即使经过五个循环,三元纳米催化剂仍表现出显著的稳定性。该研究可能为合成用于环境修复应用的可见光响应催化剂提供一种低成本方法。