Suppr超能文献

使用带有跳过连接标记的转换器对表格数据进行 sepsis 患者的预后预测。

Prognostic prediction of sepsis patient using transformer with skip connected token for tabular data.

机构信息

Mediv Corporation, Cheongju-si, Chungcheongbuk-do, Republic of Korea; Chungbuk National University College of Medicine, Cheongju-si, Chungcheongbuk-do, Republic of Korea.

AI Research Center, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, Republic of Korea; Chungbuk National University College of Medicine, Cheongju-si, Chungcheongbuk-do, Republic of Korea.

出版信息

Artif Intell Med. 2024 Mar;149:102804. doi: 10.1016/j.artmed.2024.102804. Epub 2024 Feb 12.

Abstract

Sepsis is known as a common syndrome in intensive care units (ICU), and severe sepsis and septic shock are among the leading causes of death worldwide. The purpose of this study is to develop a deep learning model that supports clinicians in efficiently managing sepsis patients in the ICU by predicting mortality, ICU length of stay (>14 days), and hospital length of stay (>30 days). The proposed model was developed using 591 retrospective data with 16 tabular data related to a sequential organ failure assessment (SOFA) score. To analyze tabular data, we designed the modified architecture of the transformer that has achieved extraordinary success in the field of languages and computer vision tasks in recent years. The main idea of the proposed model is to use a skip-connected token, which combines both local (feature-wise token) and global (classification token) information as the output of a transformer encoder. The proposed model was compared with four machine learning models (ElasticNet, Extreme Gradient Boosting [XGBoost]), and Random Forest) and three deep learning models (Multi-Layer Perceptron [MLP], transformer, and Feature-Tokenizer transformer [FT-Transformer]) and achieved the best performance (mortality, area under the receiver operating characteristic (AUROC) 0.8047; ICU length of stay, AUROC 0.8314; hospital length of stay, AUROC 0.7342). We anticipate that the proposed model architecture will provide a promising approach to predict the various clinical endpoints using tabular data such as electronic health and medical records.

摘要

脓毒症是重症监护病房(ICU)中常见的综合征,严重脓毒症和脓毒性休克是全球主要死亡原因之一。本研究旨在开发一种深度学习模型,通过预测死亡率、ICU 住院时间(>14 天)和住院时间(>30 天),帮助临床医生有效管理 ICU 中的脓毒症患者。该模型使用 591 例回顾性数据和 16 个与序贯器官衰竭评估(SOFA)评分相关的表格数据进行开发。为了分析表格数据,我们设计了修改后的变压器架构,该架构在近年来语言和计算机视觉任务领域取得了非凡的成功。所提出模型的主要思想是使用跳过连接的标记,该标记结合了局部(特征标记)和全局(分类标记)信息作为变压器编码器的输出。所提出的模型与四个机器学习模型(ElasticNet、极端梯度提升(XGBoost))和三个深度学习模型(多层感知机(MLP)、变压器和特征标记器变压器(FT-Transformer))进行了比较,并取得了最佳性能(死亡率,AUROC 0.8047;ICU 住院时间,AUROC 0.8314;住院时间,AUROC 0.7342)。我们预计,所提出的模型架构将为使用电子健康和医疗记录等表格数据预测各种临床终点提供一种有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验