Suppr超能文献

子空间校正关联学习及其在神经影像学中的应用。

Subspace corrected relevance learning with application in neuroimaging.

机构信息

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands.

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, The Netherlands.

出版信息

Artif Intell Med. 2024 Mar;149:102786. doi: 10.1016/j.artmed.2024.102786. Epub 2024 Jan 24.

Abstract

In machine learning, data often comes from different sources, but combining them can introduce extraneous variation that affects both generalization and interpretability. For example, we investigate the classification of neurodegenerative diseases using FDG-PET data collected from multiple neuroimaging centers. However, data collected at different centers introduces unwanted variation due to differences in scanners, scanning protocols, and processing methods. To address this issue, we propose a two-step approach to limit the influence of center-dependent variation on the classification of healthy controls and early vs. late-stage Parkinson's disease patients. First, we train a Generalized Matrix Learning Vector Quantization (GMLVQ) model on healthy control data to identify a "relevance space" that distinguishes between centers. Second, we use this space to construct a correction matrix that restricts a second GMLVQ system's training on the diagnostic problem. We evaluate the effectiveness of this approach on the real-world multi-center datasets and simulated artificial dataset. Our results demonstrate that the approach produces machine learning systems with reduced bias - being more specific due to eliminating information related to center differences during the training process - and more informative relevance profiles that can be interpreted by medical experts. This method can be adapted to similar problems outside the neuroimaging domain, as long as an appropriate "relevance space" can be identified to construct the correction matrix.

摘要

在机器学习中,数据通常来自不同的来源,但将它们组合在一起可能会引入额外的变化,从而影响泛化和可解释性。例如,我们使用来自多个神经影像学中心的 FDG-PET 数据来研究神经退行性疾病的分类。然而,由于扫描仪、扫描协议和处理方法的差异,不同中心收集的数据会引入不必要的变化。为了解决这个问题,我们提出了一种两步法来限制中心依赖性变化对健康对照组和早晚期帕金森病患者分类的影响。首先,我们在健康对照组数据上训练一个广义矩阵学习向量量化 (GMLVQ) 模型,以确定一个“相关性空间”,该空间可以区分中心。其次,我们使用这个空间来构建一个校正矩阵,限制第二个 GMLVQ 系统在诊断问题上的训练。我们在真实的多中心数据集和模拟的人工数据集上评估了这种方法的有效性。我们的结果表明,该方法产生的机器学习系统具有较低的偏差——由于在训练过程中消除了与中心差异相关的信息,因此更加具体——并且具有更具信息量的相关性分布,可以由医学专家进行解释。只要能够确定适当的“相关性空间”来构建校正矩阵,这种方法就可以适用于神经影像学领域之外的类似问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验