Suppr超能文献

通过转化为动力学稳定的1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸络合物,然后基于毛细管电泳-液体闪烁进行浓缩-分离-分馏来测定高放射性水样中的锶。

Determination of Sr in highly radioactive aqueous samples via conversion to a kinetically stable 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex followed by concentration-separation-fractionation based on capillary electrophoresis-liquid scintillation.

作者信息

Ouchi Kazuki, Haraga Tomoko, Hirose Kazuki, Kurosawa Yuika, Sato Yoshiyuki, Shibukawa Masami, Saito Shingo

机构信息

Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1195, Japan; Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.

Department of Decommissioning and Waste Management, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1195, Japan.

出版信息

Anal Chim Acta. 2024 Apr 15;1298:342399. doi: 10.1016/j.aca.2024.342399. Epub 2024 Feb 20.

Abstract

BACKGROUND

The Fukushima Daiichi Nuclear Power Plant accident (2011) released large amounts of radioactive substances into the environment and generated highly radioactive debris. Post-accident countermeasures are currently in the phase of fuel debris removal, which requires the analysis of radioactive contaminants in the environment and fuel. The spectra of solely β-emitting nuclides, such as Sr, overlap; thus, an effective method for nuclide separation is desired. Since conventional methods for high-dose sample analysis pose substantial exposure risks and generate large amounts of secondary radioactive waste, faster procedures allowing for decreased radiation emission are highly desirable.

RESULTS

In this study, we developed a Sr quantitation technique based on liquid scintillation counting (LSC)-coupled capillary transient isotachophoresis (ctITP), along with two-point detection and relying on the rapid concentration, separation, and fractionation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-complexed Sr in a single run. The applicability of our method for the analysis of real-world samples was verified by conducting addition-recovery experiments using a seawater reference material and radioactive liquid waste obtained from the radioactive waste treatment facility at the Japan Atomic Energy Agency. The recovery determined by LSC was 95-113%, indicating successful quantitative analysis. Sr recovery was determined to be 90.1% from a contaminated water sample obtained from the Fukushima Daiichi Nuclear Power Plant, which was analyzed using the standard addition of Sr. The sensitivity (detection limit = 0.016 Bq) of the proposed method on a radioactivity basis was equal to or higher than that of the conventional method using ion exchange-LSC (0.012-0.07 Bq).

SIGNIFICANCE AND NOVELTY

Our method allows for the handling of high-dose radioactive samples at the microliter level and is substantially faster than conventional ion exchange protocols, whereas ctITP has not been used for practical applications due to inaccurate collection and lack of a suitable chemical system. The concentration-separation-fractionation protocol in ctITP is successful due to the existence of a rare inert Sr complex and precise fractionation. This study establishes a pathway toward safer and more practical analysis of radionuclides.

摘要

背景

2011年福岛第一核电站事故向环境中释放了大量放射性物质,并产生了高放射性碎片。事故后的应对措施目前正处于燃料碎片清除阶段,这需要分析环境和燃料中的放射性污染物。仅发射β射线的核素(如锶)的光谱会重叠,因此需要一种有效的核素分离方法。由于传统的高剂量样品分析方法存在很大的暴露风险并会产生大量二次放射性废物,因此非常需要能够减少辐射释放的更快分析程序。

结果

在本研究中,我们开发了一种基于液体闪烁计数(LSC)耦合毛细管瞬态等速电泳(ctITP)的锶定量技术,采用两点检测,依靠1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(DOTA)络合锶在单次运行中快速浓缩、分离和分馏。通过使用海水参考物质和从日本原子能机构放射性废物处理设施获得的放射性废液进行加标回收实验,验证了我们的方法对实际样品分析的适用性。通过LSC测定的回收率为95-113%,表明定量分析成功。使用锶标准加入法分析从福岛第一核电站获得的受污染水样,确定锶回收率为9�.1%。该方法基于放射性的灵敏度(检测限 = 0.016 Bq)等于或高于使用离子交换-LSC的传统方法(0.012-0.07 Bq)。

意义和新颖性

我们的方法允许在微升水平处理高剂量放射性样品,并且比传统离子交换方案快得多,而ctITP由于收集不准确和缺乏合适的化学体系尚未用于实际应用。由于存在稀有的惰性锶络合物和精确的分馏,ctITP中的浓缩-分离-分馏方案取得了成功。本研究建立了一条通往更安全、更实用的放射性核素分析的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验