Suppr超能文献

基于RNA测序的自噬相关基因对甲状腺乳头状癌患者诊断模型的机器学习预测

Machine-learning-based prediction of a diagnostic model using autophagy-related genes based on RNA sequencing for patients with papillary thyroid carcinoma.

作者信息

Chen Lin, Tao Gaofeng, Yang Mei

机构信息

Department of Endocrinology and Metabolism, People's Hospital of Chongqing Liang jiang New Area, Chongqing, China.

Department of Medicine and Education, People's Hospital of Chongqing Liang jiang New Area, Chongqing, China.

出版信息

Open Med (Wars). 2024 Feb 5;19(1):20240896. doi: 10.1515/med-2024-0896. eCollection 2024.

Abstract

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer and belongs to the category of malignant tumors of the thyroid gland. Autophagy plays an important role in PTC. The purpose of this study is to develop a novel diagnostic model using autophagy-related genes (ARGs) in patients. In this study, RNA sequencing data of PTC samples and normal samples were obtained from GSE33630 and GSE29265. Then, we analyzed GSE33630 datasets and identified 127 DE-ARGs. Functional enrichment analysis suggested that 127 DE-ARGs were mainly enriched in pathways in cancer, protein processing in endoplasmic reticulum, toll-like receptor pathway, MAPK pathway, apoptosis, neurotrophin signaling pathway, and regulation of autophagy. Subsequently, CALCOCO2, DAPK1, and RAC1 among the 127 DE-ARGs were identified as diagnostic genes by support vector machine recursive feature elimination and least absolute shrinkage and selection operator algorithms. Then, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 and its diagnostic value was confirmed in GSE29265 and our cohorts. Importantly, CALCOCO2 may be a critical regulator involved in immune microenvironment because its expression was related to many types of immune cells. Overall, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 which can be used as diagnostic markers of PTC.

摘要

甲状腺乳头状癌(PTC)是最常见的甲状腺癌类型,属于甲状腺恶性肿瘤范畴。自噬在PTC中发挥着重要作用。本研究的目的是利用自噬相关基因(ARGs)为患者开发一种新型诊断模型。在本研究中,从GSE33630和GSE29265获取了PTC样本和正常样本的RNA测序数据。然后,我们分析了GSE33630数据集并鉴定出127个差异表达自噬相关基因(DE-ARGs)。功能富集分析表明,127个DE-ARGs主要富集于癌症通路、内质网中的蛋白质加工、Toll样受体通路、丝裂原活化蛋白激酶(MAPK)通路、凋亡、神经营养因子信号通路和自噬调节。随后,通过支持向量机递归特征消除和最小绝对收缩和选择算子算法,在127个DE-ARGs中确定CALCOCO2、DAPK1和RAC1为诊断基因。然后,我们利用CALCOCO2、DAPK1和RAC1开发了一种新型诊断模型,其诊断价值在GSE29265和我们的队列中得到了证实。重要的是,CALCOCO2可能是参与免疫微环境的关键调节因子,因为其表达与多种免疫细胞类型有关。总体而言,我们利用CALCOCO2、DAPK1和RAC1开发了一种新型诊断模型,可作为PTC的诊断标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d53/10921443/e711d529c1be/j_med-2024-0896-fig001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验