Suppr超能文献

利用空间扩散输入信号控制人类连接组

Controlling the human connectome with spatially diffuse input signals.

作者信息

Betzel Richard, Puxeddu Maria Grazia, Seguin Caio, Bazinet Vincent, Luppi Andrea, Podschun Alina, Singleton S Parker, Faskowitz Joshua, Parakkattu Vibin, Misic Bratislav, Markett Sebastian, Kuceyeski Amy, Parkes Linden

机构信息

Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401.

Cognitive Science Program, Indiana University, Bloomington IN 47401.

出版信息

bioRxiv. 2024 Feb 28:2024.02.27.581006. doi: 10.1101/2024.02.27.581006.

Abstract

The human brain is never at "rest"; its activity is constantly fluctuating over time, transitioning from one brain state-a whole-brain pattern of activity-to another. Network control theory offers a framework for understanding the effort - energy - associated with these transitions. One branch of control theory that is especially useful in this context is "optimal control", in which input signals are used to selectively drive the brain into a target state. Typically, these inputs are introduced independently to the nodes of the network (each input signal is associated with exactly one node). Though convenient, this input strategy ignores the continuity of cerebral cortex - geometrically, each region is connected to its spatial neighbors, allowing control signals, both exogenous and endogenous, to spread from their foci to nearby regions. Additionally, the spatial specificity of brain stimulation techniques is limited, such that the effects of a perturbation are measurable in tissue surrounding the stimulation site. Here, we adapt the network control model so that input signals have a spatial extent that decays exponentially from the input site. We show that this more realistic strategy takes advantage of spatial dependencies in structural connectivity and activity to reduce the energy (effort) associated with brain state transitions. We further leverage these dependencies to explore near-optimal control strategies such that, on a per-transition basis, the number of input signals required for a given control task is reduced, in some cases by two orders of magnitude. This approximation yields network-wide maps of input site density, which we compare to an existing database of functional, metabolic, genetic, and neurochemical maps, finding a close correspondence. Ultimately, not only do we propose a more efficient framework that is also more adherent to well-established brain organizational principles, but we also posit neurobiologically grounded bases for optimal control.

摘要

人类大脑从未处于“静止”状态;其活动随时间不断波动,从一种脑状态——全脑活动模式——转变为另一种。网络控制理论提供了一个框架,用于理解与这些转变相关的努力——能量。在这种情况下特别有用的控制理论的一个分支是“最优控制”,其中输入信号被用于选择性地将大脑驱动到目标状态。通常,这些输入被独立地引入到网络的节点(每个输入信号恰好与一个节点相关联)。尽管方便,但这种输入策略忽略了大脑皮层的连续性——从几何角度看,每个区域都与其空间邻域相连,使得外源性和内源性控制信号都能从其焦点传播到附近区域。此外,脑刺激技术的空间特异性是有限的,以至于扰动的影响在刺激部位周围的组织中是可测量的。在这里,我们对网络控制模型进行了调整,使输入信号具有从输入部位呈指数衰减的空间范围。我们表明,这种更现实的策略利用了结构连通性和活动中的空间依赖性,以减少与脑状态转变相关的能量(努力)。我们进一步利用这些依赖性来探索近最优控制策略,使得在每次转变的基础上,给定控制任务所需的输入信号数量减少,在某些情况下减少两个数量级。这种近似产生了全网络的输入部位密度图,我们将其与现有的功能、代谢、遗传和神经化学图谱数据库进行比较,发现了密切的对应关系。最终,我们不仅提出了一个更有效且更符合既定脑组织原则的框架,而且还提出了基于神经生物学的最优控制基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bba6/10925126/3fe7bd41674a/nihpp-2024.02.27.581006v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验