Suppr超能文献

输入节点位置对结构脑网络可控性的影响。

The impact of input node placement in the controllability of structural brain networks.

机构信息

Department of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran.

The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.

出版信息

Sci Rep. 2024 Mar 22;14(1):6902. doi: 10.1038/s41598-024-57181-0.

Abstract

Network controllability refers to the ability to steer the state of a network towards a target state by driving certain nodes, known as input nodes. This concept can be applied to brain networks for studying brain function and its relation to the structure, which has numerous practical applications. Brain network controllability involves using external signals such as electrical stimulation to drive specific brain regions and navigate the neurophysiological activity level of the brain around the state space. Although controllability is mainly theoretical, the energy required for control is critical in real-world implementations. With a focus on the structural brain networks, this study explores the impact of white matter fiber architecture on the control energy in brain networks using the theory of how input node placement affects the LCC (the longest distance between inputs and other network nodes). Initially, we use a single input node as it is theoretically possible to control brain networks with just one input. We show that highly connected brain regions that lead to lower LCCs are more energy-efficient as a single input node. However, there may still be a need for a significant amount of control energy with one input, and achieving controllability with less energy could be of interest. We identify the minimum number of input nodes required to control brain networks with smaller LCCs, demonstrating that reducing the LCC can significantly decrease the control energy in brain networks. Our results show that relying solely on highly connected nodes is not effective in controlling brain networks with lower energy by using multiple inputs because of densely interconnected brain network hubs. Instead, a combination of low and high-degree nodes is necessary.

摘要

网络可控性是指通过驱动某些节点(称为输入节点)将网络状态引导到目标状态的能力。这个概念可以应用于脑网络,以研究大脑功能及其与结构的关系,具有许多实际应用。脑网络可控性涉及使用外部信号(如电刺激)来驱动特定的脑区,并在脑的状态空间周围导航神经生理活动水平。尽管可控性主要是理论上的,但在实际应用中,控制所需的能量是至关重要的。本研究主要关注结构脑网络,通过研究输入节点放置如何影响 LCC(输入和其他网络节点之间的最长距离)理论,探讨白质纤维结构对脑网络控制能量的影响。最初,我们使用单个输入节点,因为理论上只用一个输入就可以控制脑网络。我们表明,导致 LCC 降低的高度连接的脑区作为单个输入节点更节能。然而,一个输入可能仍然需要大量的控制能量,而用更少的能量实现可控性可能是有意义的。我们确定了控制具有较小 LCC 的脑网络所需的最小输入节点数,证明了降低 LCC 可以显著降低脑网络中的控制能量。我们的研究结果表明,仅依靠高度连接的节点通过使用多个输入来控制具有较低能量的脑网络是无效的,因为脑网络枢纽的密集连接。相反,低和高节点度的组合是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c40/10960045/bcdd14a32ff4/41598_2024_57181_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验