Talbott Heather E, Griffin Michelle F, Mascharak Shamik, Parker Jennifer B L, Kuhnert Maxwell M, Guo Jason L, Diaz Deleon Nestor M, Lavin Christopher, Abbas Darren, Guardino Nicholas, Morgan Annah, Valencia Caleb, Cotterell Asha, Longaker Michael T, Wan Derrick C
Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine; Stanford, California, 94305, USA.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA.
Res Sq. 2024 Mar 1:rs.3.rs-3915097. doi: 10.21203/rs.3.rs-3915097/v1.
Skin fibrosis is a clinical problem with devastating impacts but limited treatment options. In the setting of diabetes, insulin administration often causes local dermal fibrosis, leading to a range of clinical sequelae including impeded insulin absorption. Mechanical forces are important drivers of fibrosis and, clinically, physical tension offloading at the skin level using an elastomeric patch significantly reduces wound scarring. However, it is not known whether tension offloading could similarly prevent skin fibrosis in the setting of pro-fibrotic injections. Here, we develop a porcine model using repeated local injections of bleomycin to recapitulate key features of insulin-induced skin fibrosis. Using histologic, tissue ultrastructural, and biomechanical analyses, we show that application of a tension-offloading patch both prevents and rescues existing skin fibrosis from bleomycin injections. By applying single-cell transcriptomic analysis, we find that the fibrotic response to bleomycin involves shifts in myeloid cell dynamics from favoring putatively pro-regenerative to pro-fibrotic myeloid subtypes; in a mechanomodulatory platform, we show that these shifts are mechanically driven and reversed by exogenous IL4. Finally, using a human foreskin xenograft model, we show that IL4 treatment mitigates bleomycin-induced dermal fibrosis. Overall, this study highlights that skin tension offloading, using an FDA cleared, commercially available patch, could have significant potential clinical benefit for the millions of patients dependent on insulin.
皮肤纤维化是一个具有严重影响但治疗选择有限的临床问题。在糖尿病背景下,注射胰岛素常导致局部皮肤纤维化,引发一系列临床后遗症,包括胰岛素吸收受阻。机械力是纤维化的重要驱动因素,在临床上,使用弹性贴片减轻皮肤层面的物理张力可显著减少伤口瘢痕形成。然而,尚不清楚在促纤维化注射的情况下,减轻张力是否同样能预防皮肤纤维化。在此,我们通过重复局部注射博来霉素建立了一个猪模型,以重现胰岛素诱导的皮肤纤维化的关键特征。通过组织学、组织超微结构和生物力学分析,我们发现应用减轻张力的贴片既能预防博来霉素注射引起的皮肤纤维化,也能挽救已有的皮肤纤维化。通过单细胞转录组分析,我们发现对博来霉素的纤维化反应涉及髓系细胞动态变化,从有利于假定的促再生髓系亚型转变为促纤维化髓系亚型;在一个机械调节平台中,我们表明这些转变是由机械驱动的,并可被外源性白细胞介素4逆转。最后,使用人包皮异种移植模型,我们表明白细胞介素4治疗可减轻博来霉素诱导的皮肤纤维化。总体而言,这项研究强调,使用经美国食品药品监督管理局批准的市售贴片减轻皮肤张力,可能对数百万依赖胰岛素的患者具有显著的潜在临床益处。