Deo Anthony J, Castro Victor M, Baker Ashley, Carroll Devon, Gonzalez-Heydrich Joseph, Henderson David C, Holt Daphne J, Hook Kimberly, Karmacharya Rakesh, Roffman Joshua L, Madsen Emily M, Song Eugene, Adams William G, Camacho Luisa, Gasman Sarah, Gibbs Jada S, Fortgang Rebecca G, Kennedy Chris J, Lozinski Galina, Perez Daisy C, Wilson Marina, Reis Ben Y, Smoller Jordan W
Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA.
Department of Psychiatry, Harvard Medical School, Boston, MA.
medRxiv. 2024 Feb 29:2024.02.28.24303443. doi: 10.1101/2024.02.28.24303443.
Early detection of psychosis is critical for improving outcomes. Algorithms to predict or detect psychosis using electronic health record (EHR) data depend on the validity of the case definitions used, typically based on diagnostic codes. Data on the validity of psychosis-related diagnostic codes is limited. We evaluated the positive predictive value (PPV) of International Classification of Diseases (ICD) codes for psychosis.
Using EHRs at three health systems, ICD codes comprising primary psychotic disorders and mood disorders with psychosis were grouped into five higher-order groups. 1,133 records were sampled for chart review using the full EHR. PPVs (the probability of chart-confirmed psychosis given ICD psychosis codes) were calculated across multiple treatment settings.
PPVs across all diagnostic groups and hospital systems exceeded 70%: Massachusetts General Brigham 0.72 [95% CI 0.68-0.77], Boston Children's Hospital 0.80 [0.75-0.84], and Boston Medical Center 0.83 [0.79-0.86]. Schizoaffective disorder PPVs were consistently the highest across sites (0.80-0.92) and major depressive disorder with psychosis were the most variable (0.57-0.79). To determine if the first documented code captured first-episode psychosis (FEP), we excluded cases with prior chart evidence of a diagnosis of or treatment for a psychotic illness, yielding substantially lower PPVs (0.08-0.62).
We found that the first documented psychosis diagnostic code accurately captured true episodes of psychosis but was a poor index of FEP. These data have important implications for the development of risk prediction models designed to predict or detect undiagnosed psychosis.
早期发现精神病对于改善预后至关重要。使用电子健康记录(EHR)数据预测或检测精神病的算法取决于所使用病例定义的有效性,通常基于诊断代码。与精神病相关诊断代码有效性的数据有限。我们评估了国际疾病分类(ICD)代码对精神病的阳性预测值(PPV)。
利用三个医疗系统的电子健康记录,将包括原发性精神障碍和伴有精神病的情绪障碍的ICD代码分为五个更高层次的组。使用完整的电子健康记录对1133份记录进行抽样以进行病历审查。在多个治疗环境中计算PPV(给定ICD精神病代码时病历确认的精神病概率)。
所有诊断组和医院系统的PPV均超过70%:麻省总医院布莱根分院为0.72[95%置信区间0.68 - 0.77],波士顿儿童医院为0.80[0.75 - 0.84],波士顿医疗中心为0.83[0.79 - 0.86]。精神分裂症性障碍的PPV在各地点始终最高(0.80 - 0.92),伴有精神病的重度抑郁症的PPV变化最大(0.57 - 0.79)。为了确定首次记录的代码是否捕捉到首发精神病(FEP),我们排除了先前病历中有精神病诊断或治疗证据的病例,得出的PPV大幅降低(0.08 - 0.62)。
我们发现首次记录的精神病诊断代码准确捕捉到了真正的精神病发作,但对FEP的指示性较差。这些数据对于旨在预测或检测未诊断精神病的风险预测模型的开发具有重要意义。