Suppr超能文献

Sedimentation of large, soluble proteins up to 140 kDa for H-detected MAS NMR and C DNP NMR - practical aspects.

作者信息

Bell Dallas, Lindemann Florian, Gerland Lisa, Aucharova Hanna, Klein Alexander, Friedrich Daniel, Hiller Matthias, Grohe Kristof, van Rossum Barth, Diehl Anne, Hughes Jon, Mueller Leonard J, Linser Rasmus, Miller Anne-Frances, Oschkinat Hartmut

机构信息

Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin.

Leibniz-Forschungsinstitut für Molekulare Pharmakologie.

出版信息

Res Sq. 2024 Feb 23:rs.3.rs-3972885. doi: 10.21203/rs.3.rs-3972885/v1.

Abstract

Solution NMR is typically applied to biological systems with molecular weights < 40 kDa whereas magic-angle-spinning (MAS) solid-state NMR traditionally targets very large, oligomeric proteins and complexes exceeding 500 kDa in mass, including fibrils and crystalline protein preparations. Here, we propose that the gap between these size regimes can be filled by the approach presented that enables investigation of large, soluble and fully protonated proteins in the range of 40-140 kDa. As a key step, ultracentrifugation produces a highly concentrated, gel-like state, resembling a dense phase in spontaneous liquid-liquid phase separation (LLPS). By means of three examples, bifurcating electron transfer flavoprotein (ETF), tryptophan synthases from (TS) and the dimeric β-subunits from (TrpB), we show that such samples yield well-resolved proton-detected 2D and 3D NMR spectra at 100 kHz MAS without heterogeneous broadening, similar to diluted liquids. Herein, we provide practical guidance on centrifugation conditions and tools, sample behavior, and line widths expected. We demonstrate that the observed chemical shifts correspond to those obtained from μM/low mM solutions or crystalline samples, indicating structural integrity. Nitrogen line widths as low as 20-30 Hz are observed. The presented approach is advantageous for proteins or nucleic acids that cannot be deuterated due to the expression system used, or where relevant protons cannot be re-incorporated after expression in deuterated medium, and it circumvents crystallization. Importantly, it allows the use of low-glycerol buffers in dynamic nuclear polarization (DNP) NMR of proteins as demonstrated with the cyanobacterial phytochrome Cph1.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3554/10925473/7dfde5c72d18/nihpp-rs3972885v1-f0001.jpg

相似文献

2
Sedimentation of large, soluble proteins up to 140 kDa for H-detected MAS NMR and C DNP NMR - practical aspects.
J Biomol NMR. 2024 Sep;78(3):179-192. doi: 10.1007/s10858-024-00444-9. Epub 2024 Jun 21.
3
Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
Acc Chem Res. 2017 Apr 18;50(4):1105-1113. doi: 10.1021/acs.accounts.7b00082. Epub 2017 Mar 29.
4
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning.
J Am Chem Soc. 2007 Sep 26;129(38):11791-801. doi: 10.1021/ja073462m. Epub 2007 Aug 29.
5
Dynamic Nuclear Polarization-Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic-Angle Spinning.
Angew Chem Int Ed Engl. 2018 Jun 18;57(25):7458-7462. doi: 10.1002/anie.201801016. Epub 2018 Apr 27.
8
NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1.
Front Mol Biosci. 2015 Jul 28;2:42. doi: 10.3389/fmolb.2015.00042. eCollection 2015.
9
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
J Magn Reson. 2015 Sep;258:102-20. doi: 10.1016/j.jmr.2015.07.001. Epub 2015 Jul 13.
10
Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9187-92. doi: 10.1073/pnas.1602248113. Epub 2016 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验