Nandwani Neha, Bhowmik Debanjan, Childers Matthew C, Goluguri Rama Reddy, Dawood Aminah, Regnier Michael, Spudich James A, Ruppel Kathleen M
bioRxiv. 2024 Mar 2:2024.02.29.582851. doi: 10.1101/2024.02.29.582851.
At the molecular level, clinical hypercontractility associated with many hypertrophic cardiomyopathy (HCM)-causing mutations in beta-cardiac myosin appears to be driven by their disruptive effect on the energy-conserving, folded-back, super relaxed (SRX) OFF-state of myosin. A pathological increase in force production results from release of heads from this OFF-state, which results in an increase in the number of heads free to interact with actin and produce force. Pathogenic mutations in myosin can conceivably disrupt the OFF-state by (1) directly affecting the intramolecular interfaces stabilizing the folded-back state, or (2) allosterically destabilizing the folded-back state via disruption of diverse conformational states of the myosin motor along its chemomechanical cycle. However, very little is understood about the mutations that fall in the latter group. Here, using recombinant human beta-cardiac myosin, we analysed the biomechanical properties of two such HCM-causing mutations, Y115H (in the transducer) and E497D (in the relay helix), neither of which falls in the regions that interact to stabilize the myosin folded-back state. We find these mutations have diverse effects on the contractility parameters of myosin, yet the primary hypercontractile change in both cases is the destabilization of the OFF-state of myosin and increased availability of active myosin heads for actin-binding. Experimental data and molecular dynamics simulations indicate that these mutations likely destabilize the pre-powerstroke state of myosin, the conformation the motor adopts in the inactive folded-back state. We propose that destabilization of the folded-back state of myosin, directly and/or allosterically, is the molecular basis of hypercontractility in HCM in a far greater number of pathogenic mutations than currently thought.
在分子水平上,与许多导致肥厚型心肌病(HCM)的β-心肌肌球蛋白突变相关的临床超收缩性,似乎是由它们对肌球蛋白的节能、折返、超松弛(SRX)关闭状态的破坏作用所驱动。力产生的病理性增加源于头部从这种关闭状态的释放,这导致可自由与肌动蛋白相互作用并产生力的头部数量增加。肌球蛋白中的致病突变可以想象通过以下方式破坏关闭状态:(1)直接影响稳定折返状态的分子内界面,或(2)通过破坏肌球蛋白马达沿其化学机械循环的不同构象状态,以变构方式使折返状态不稳定。然而,对于后一组中的突变了解甚少。在这里,我们使用重组人β-心肌肌球蛋白,分析了两个导致HCM的此类突变Y115H(在转导器中)和E497D(在中继螺旋中)的生物力学特性,这两个突变都不在相互作用以稳定肌球蛋白折返状态的区域。我们发现这些突变对肌球蛋白的收缩参数有不同影响,但在这两种情况下,主要的超收缩变化都是肌球蛋白关闭状态的不稳定以及活性肌球蛋白头部与肌动蛋白结合的可用性增加。实验数据和分子动力学模拟表明,这些突变可能使肌球蛋白的预动力冲程状态不稳定,即马达在无活性折返状态下所采用的构象。我们提出,肌球蛋白折返状态的不稳定,直接和/或通过变构方式,是HCM中比目前认为的更多致病突变导致超收缩性的分子基础。