MyoKardia Inc., South San Francisco, CA 94080.
Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8143-E8152. doi: 10.1073/pnas.1809540115. Epub 2018 Aug 13.
Mutations in β-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity, and ATPase activity of myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative model posits that mutations in myosin affect the stability of a sequestered, super relaxed state (SRX) of the protein with very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin. Here we show that purified human β-cardiac myosin exists partly in an SRX and may in part correspond to a folded-back conformation of myosin heads observed in muscle fibers around the thick filament backbone. Mutations that cause hypertrophic cardiomyopathy destabilize this state, while the small molecule mavacamten promotes it. These findings provide a biochemical and structural link between the genetics and physiology of cardiomyopathy with implications for therapeutic strategies.
β- 心脏肌球蛋白突变可改变心肌收缩力并导致心肌病,β- 心脏肌球蛋白是人类心脏收缩的主要运动蛋白。然而,对肌球蛋白固有力、速度和 ATP 酶活性的测量并未提供将突变与肌肉病理学联系起来的一致机制。另一种模型假设肌球蛋白突变会影响蛋白质的隔离、超松弛状态 (SRX) 的稳定性,这种状态下的 ATP 水解非常缓慢,从而改变肌球蛋白头部与肌动蛋白结合的数量。本文研究表明,纯化的人类 β- 心脏肌球蛋白部分处于 SRX 状态,可能部分对应于在粗丝骨架周围的肌纤维中观察到的肌球蛋白头部折叠回的构象。导致肥厚型心肌病的突变会使这种状态失稳,而小分子 mavacamten 则会促进其稳定。这些发现为心肌病的遗传学和生理学之间提供了生化和结构联系,对治疗策略具有重要意义。