文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Key candidate genes and pathways in T lymphoblastic leukemia/lymphoma identified by bioinformatics and serological analyses.

作者信息

Ren Yansong, Liang Haoyue, Huang Yali, Miao Yuyang, Li Ruihua, Qiang Junlian, Wu Lihong, Qi Jinfeng, Li Ying, Xia Yonghui, Huang Lunhui, Wang Shoulei, Kong Xiaodong, Zhou Yuan, Zhang Qiang, Zhu Guoqing

机构信息

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Tianjin Institutes of Health Science, Tianjin, China.

出版信息

Front Immunol. 2024 Feb 23;15:1341255. doi: 10.3389/fimmu.2024.1341255. eCollection 2024.


DOI:10.3389/fimmu.2024.1341255
PMID:38464517
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10920334/
Abstract

T-cell acute lymphoblastic leukemia (TALL)/T-cell lymphoblastic lymphoma (T-LBL) is an uncommon but highly aggressive hematological malignancy. It has high recurrence and mortality rates and is challenging to treat. This study conducted bioinformatics analyses, compared genetic expression profiles of healthy controls with patients having T-ALL/T-LBL, and verified the results through serological indicators. Data were acquired from the GSE48558 dataset from Gene Expression Omnibus (GEO). T-ALL patients and normal T cells-related differentially expressed genes (DEGs) were investigated using the online analysis tool GEO2R in GEO, identifying 78 upregulated and 130 downregulated genes. Gene Ontology (GO) and protein-protein interaction (PPI) network analyses of the top 10 DEGs showed enrichment in pathways linked to abnormal mitotic cell cycles, chromosomal instability, dysfunction of inflammatory mediators, and functional defects in T-cells, natural killer (NK) cells, and immune checkpoints. The DEGs were then validated by examining blood indices in samples obtained from patients, comparing the T-ALL/T-LBL group with the control group. Significant differences were observed in the levels of various blood components between T-ALL and T-LBL patients. These components include neutrophils, lymphocyte percentage, hemoglobin (HGB), total protein, globulin, erythropoietin (EPO) levels, thrombin time (TT), D-dimer (DD), and C-reactive protein (CRP). Additionally, there were significant differences in peripheral blood leukocyte count, absolute lymphocyte count, creatinine, cholesterol, low-density lipoprotein, folate, and thrombin times. The genes and pathways associated with T-LBL/T-ALL were identified, and peripheral blood HGB, EPO, TT, DD, and CRP were key molecular markers. This will assist the diagnosis of T-ALL/T-LBL, with applications for differential diagnosis, treatment, and prognosis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/5153d049d834/fimmu-15-1341255-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/cbe4d8b0979f/fimmu-15-1341255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/956e765a9d12/fimmu-15-1341255-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/db8cec8d7d26/fimmu-15-1341255-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/bf787d448f82/fimmu-15-1341255-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/f8ad86f4d74d/fimmu-15-1341255-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/973c1f2b0812/fimmu-15-1341255-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/8067671bd264/fimmu-15-1341255-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/5153d049d834/fimmu-15-1341255-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/cbe4d8b0979f/fimmu-15-1341255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/956e765a9d12/fimmu-15-1341255-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/db8cec8d7d26/fimmu-15-1341255-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/bf787d448f82/fimmu-15-1341255-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/f8ad86f4d74d/fimmu-15-1341255-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/973c1f2b0812/fimmu-15-1341255-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/8067671bd264/fimmu-15-1341255-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b367/10920334/5153d049d834/fimmu-15-1341255-g008.jpg

相似文献

[1]
Key candidate genes and pathways in T lymphoblastic leukemia/lymphoma identified by bioinformatics and serological analyses.

Front Immunol. 2024-2-23

[2]
Bioinformatics and Raman spectroscopy-based identification of key pathways and genes enabling differentiation between acute myeloid leukemia and T cell acute lymphoblastic leukemia.

Front Immunol. 2023

[3]
Identification of Key Biomarkers and Potential Molecular Mechanisms in Renal Cell Carcinoma by Bioinformatics Analysis.

J Comput Biol. 2019-11

[4]
Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.

J Ovarian Res. 2020-1-27

[5]
Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.

Mol Med Rep. 2018-5-29

[6]
Identification of Hub Genes and Key Pathways Associated with Peripheral T-cell Lymphoma.

Curr Med Sci. 2020-10

[7]
Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.

Mol Med Rep. 2018-8-21

[8]
Complete Blood Count Score Model Integrating Reduced Lymphocyte-Monocyte Ratio, Elevated Neutrophil-Lymphocyte Ratio, and Elevated Platelet-Lymphocyte Ratio Predicts Inferior Clinical Outcomes in Adult T-Lymphoblastic Lymphoma.

Oncologist. 2019-4-5

[9]
Oncogenetic landscape of T-cell lymphoblastic lymphomas compared to T-cell acute lymphoblastic leukemia.

Mod Pathol. 2022-9

[10]
Upregulation of miRNA-17 and miRNA-19 is associated with unfavorable prognosis in patients with T-cell lymphoblastic lymphoma.

Exp Mol Pathol. 2015-10

引用本文的文献

[1]
Establishment and validation of a clinical prediction model for colorectal adenoma risk factors.

Oncol Lett. 2025-5-2

本文引用的文献

[1]
The Novel Link between Gene Expression Profiles of Adult T-Cell Leukemia/Lymphoma Patients' Peripheral Blood Lymphocytes and Ferroptosis Susceptibility.

Genes (Basel). 2023-10-27

[2]
Deletion of the inhibitory co-receptor CTLA-4 enhances and invigorates chimeric antigen receptor T cells.

Immunity. 2023-10-10

[3]
KIF11 serves as a cell cycle mediator in childhood acute lymphoblastic leukemia.

J Cancer Res Clin Oncol. 2023-11

[4]
Outlier Expression of Isoforms by Targeted or Total RNA Sequencing Identifies Clinically Significant Genomic Variants in Hematolymphoid Tumors.

J Mol Diagn. 2023-9

[5]
Targeting CDK1 in cancer: mechanisms and implications.

NPJ Precis Oncol. 2023-6-13

[6]
FOXM1: Functional Roles of FOXM1 in Non-Malignant Diseases.

Biomolecules. 2023-5-18

[7]
Diagnosis and management of lymphoblastic lymphoma in children, adolescents and young adults.

Best Pract Res Clin Haematol. 2023-3

[8]
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL).

Int J Mol Sci. 2023-2-3

[9]
KIF11 As a Potential Pan-Cancer Immunological Biomarker Encompassing the Disease Staging, Prognoses, Tumor Microenvironment, and Therapeutic Responses.

Oxid Med Cell Longev. 2022

[10]
TOP2A deficiency leads to human recurrent spontaneous abortion and growth retardation of mouse pre-implantation embryos.

Mol Med. 2022-12-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索