School of Engineering, Zürich University of Applied Sciences (ZHAW), Winterthur, Switzerland.
Chemistry Department, University of Fribourg, Fribourg, Switzerland.
Int J Hyperthermia. 2024;41(1):2320852. doi: 10.1080/02656736.2024.2320852. Epub 2024 Mar 11.
Hyperthermia (HT) induces various cellular biological processes, such as repair impairment and direct HT cell killing. In this context, biophysical models that translate deviations in the treatment conditions into clinical outcome variations may be used to study the extent of such processes and their influence on combined hyperthermia plus radiotherapy (HT + RT) treatments under varying conditions.
An extended linear-quadratic model calibrated for SiHa and HeLa cell lines (cervical cancer) was used to theoretically study the impact of varying HT treatment conditions on radiosensitization and direct HT cell killing effect. Simulated patients were generated to compute the Tumor Control Probability (TCP) under different HT conditions (number of HT sessions, temperature and time interval), which were randomly selected within margins based on reported patient data.
Under the studied conditions, model-based simulations suggested a treatment improvement with a total CEM43 thermal dose of approximately 10 min. Additionally, for a given thermal dose, TCP increased with the number of HT sessions. Furthermore, in the simulations, we showed that the TCP dependence on the temperature/time interval is more correlated with the mean value than with the minimum/maximum value and that comparing the treatment outcome with the mean temperature can be an excellent strategy for studying the time interval effect.
The use of thermoradiobiological models allows us to theoretically study the impact of varying thermal conditions on HT + RT treatment outcomes. This approach can be used to optimize HT treatments, design clinical trials, and interpret patient data.
热疗(HT)可诱导多种细胞生物学过程,如修复损伤和直接杀死 HT 细胞。在这种情况下,可以使用生物物理模型将治疗条件的偏差转化为临床结果的变化,以研究这些过程的程度及其对不同条件下的高温联合放疗(HT+RT)治疗的影响。
使用针对 SiHa 和 HeLa 细胞系(宫颈癌)校准的扩展线性二次模型,从理论上研究了不同 HT 治疗条件对放射增敏和直接 HT 细胞杀伤效应的影响。模拟患者被生成以计算不同 HT 条件(HT 疗程数、温度和时间间隔)下的肿瘤控制概率(TCP),这些条件是根据报告的患者数据在边界内随机选择的。
在研究的条件下,基于模型的模拟表明,总 CEM43 热剂量约为 10 分钟时治疗效果有所改善。此外,对于给定的热剂量,TCP 随 HT 疗程数的增加而增加。此外,在模拟中,我们表明 TCP 对温度/时间间隔的依赖性与平均值更相关,而与最小值/最大值不相关,并且比较平均温度下的治疗结果可以是研究时间间隔效应的一个极好策略。
热生物模型的使用允许我们从理论上研究不同热条件对 HT+RT 治疗结果的影响。这种方法可用于优化 HT 治疗、设计临床试验和解释患者数据。