Suppr超能文献

神经疾病患者未来跌倒的双重任务评估:系统评价。

Dual-Task Assessments for Predicting Future Falls in Neurologic Conditions: A Systematic Review.

机构信息

From the Kansas City University College of Osteopathic Medicine, Kansas City University, Kansas City, Missouri (JP, MM); Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois (AL); and Department of Physical Medicine & Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan (KG, LA).

出版信息

Am J Phys Med Rehabil. 2024 Jun 1;103(6):554-560. doi: 10.1097/PHM.0000000000002452. Epub 2024 Feb 29.

Abstract

This review investigated the ability of dual-task tests to predict falls in people with neurological disorders. Databases were searched to identify prospective cohort studies that analyzed dual-task testing and falls in people with neurological disorders. Reviewers screened studies for eligibility and extracted key information like participant characteristics, intervention details, outcome measures, and significant outcomes. Reviewers assessed methodological quality of eligible studies using the Standard Quality Assessment Criteria. Eighteen studies of strong methodological qualified with 1750 participants were included in the review. Dual-task performances were predictive of future falls in people with Huntington's disease, spinal cord injury, and moderate cognitive impairment, although only one independent study was included for each disability type. In people with stroke, 37% of eligible studies showed dual-task assessments to be predictive of future falls. No dual-task tests predicted prospective falling in people with Alzheimer's or Parkinson's disease. Complex dual tasks seemed to be more predictive of fall risk than simpler dual tasks. Results suggest that disability type, severity of disability, and task complexity play a role in the predictive ability of dual-task assessments and future falling in neurological disorders. Future studies may benefit from using this review to guide the design of effective dual-task assessments and fall interventions.

摘要

本综述调查了双重任务测试在预测神经障碍患者跌倒中的能力。检索数据库以确定分析神经障碍患者双重任务测试和跌倒的前瞻性队列研究。审查员筛选研究的合格性,并提取关键信息,如参与者特征、干预细节、结果测量和显著结果。审查员使用标准质量评估标准评估合格研究的方法学质量。有 1750 名参与者的 18 项具有较强方法学质量的研究被纳入综述。在亨廷顿病、脊髓损伤和中度认知障碍患者中,双重任务表现可预测未来跌倒,尽管每种残疾类型仅纳入了一项独立研究。在中风患者中,37%的合格研究表明双重任务评估可预测未来跌倒。阿尔茨海默病或帕金森病患者的任何双重任务测试都不能预测未来的跌倒。复杂的双重任务似乎比简单的双重任务更能预测跌倒风险。结果表明,残疾类型、残疾严重程度和任务复杂性在双重任务评估和神经障碍患者未来跌倒的预测能力中起作用。未来的研究可能受益于使用本综述来指导有效的双重任务评估和跌倒干预措施的设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验