Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
Adv Pharmacol. 2024;99:83-124. doi: 10.1016/bs.apha.2023.09.001. Epub 2023 Oct 20.
Synthetic cathinone derivatives comprise a family of psychoactive compounds structurally related to amphetamine. Over the last decade, clandestine chemists have synthesized a consistent stream of innovative cathinone derivatives to outpace governmental regulatory restrictions. Many of these unregulated substances are produced and distributed as designer drugs. Two of the principal chemical scaffolds exploited to expand the synthetic cathinone family are methcathinone and α-pyrrolidinopentiophenone (or α-pyrrolidinovalerophenone, α-PVP). These compounds' main physiological targets are monoamine transporters, where they promote addiction by potentiating dopaminergic neurotransmission. This chapter describes techniques used to study the pharmacodynamic properties of cathinones at monoamine transporters in vitro. Biochemical techniques described include uptake inhibition and release assays in rat brain synaptosomes and in mammalian expression systems. Electrophysiological techniques include current measurements using the voltage clamp technique. We describe a Ca mobilization assay wherein voltage-gated Ca channels function as reporters to study the action of synthetic cathinones at monoamine transporters. We discuss results from systematic structure-activity relationship studies on simple and complex cathinones at monoamine transporters with an emphasis on identifying structural moieties that modulate potency and selectivity at these transporters. Moreover, different profiles of selectivity at monoamine transporters directly predict compounds associated with behavioral and subjective effects within animals and humans. In conclusion, clarification of the structural aspects of compounds which modulate potency and selectivity at monoamine transporters is critical to identify and predict potential addictive drugs. This knowledge may allow prompt allocation of resources toward drugs that represent the greatest threats after drugs are identified by forensic laboratories.
合成卡西酮衍生物是一类结构上与苯丙胺有关的精神活性化合物。在过去的十年中,秘密化学家合成了一系列创新的卡西酮衍生物,以超越政府的监管限制。许多这些不受监管的物质被生产和分发为设计药物。扩展合成卡西酮家族的两个主要化学支架是甲卡西酮和α-吡咯烷苯丙酮(或α-吡咯烷戊基苯丙酮,α-PVP)。这些化合物的主要生理靶点是单胺转运体,在那里它们通过增强多巴胺能神经传递来促进成瘾。本章描述了用于研究卡西酮在单胺转运体体外的药效学特性的技术。描述的生化技术包括在大鼠脑突触小体和哺乳动物表达系统中的摄取抑制和释放测定。电生理技术包括使用电压钳技术的电流测量。我们描述了一种钙动员测定法,其中电压门控钙通道作为报告器,用于研究合成卡西酮在单胺转运体上的作用。我们讨论了在单胺转运体上对简单和复杂卡西酮进行的系统结构-活性关系研究的结果,重点是确定调节这些转运体的效力和选择性的结构部分。此外,单胺转运体的选择性不同的特征直接预测了在动物和人类中与行为和主观效应相关的化合物。总之,阐明调节单胺转运体效力和选择性的化合物的结构方面对于识别和预测潜在的成瘾药物至关重要。这些知识可以在毒品被法医实验室识别后,立即为代表最大威胁的毒品分配资源。