Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
Department of Electrical Engineering, Columbia University, New York, NY, USA.
Nature. 2024 Mar;627(8004):546-552. doi: 10.1038/s41586-024-07136-2. Epub 2024 Mar 11.
The generation of spectrally pure microwave signals is a critical functionality in fundamental and applied sciences, including metrology and communications. Optical frequency combs enable the powerful technique of optical frequency division (OFD) to produce microwave oscillations of the highest quality. Current implementations of OFD require multiple lasers, with space- and energy-consuming optical stabilization and electronic feedback components, resulting in device footprints incompatible with integration into a compact and robust photonic platform. Here we demonstrate all-optical OFD on a photonic chip by synchronizing two distinct dynamical states of Kerr microresonators pumped by a single continuous-wave laser. The inherent stability of the terahertz beat frequency between the signal and idler fields of an optical parametric oscillator is transferred to a microwave frequency of a Kerr soliton comb, and synchronization is achieved via a coupling waveguide without the need for electronic locking. OFD factors of N = 34 and 468 are achieved for 227 GHz and 16 GHz soliton combs, respectively. In particular, OFD enables a 46 dB phase-noise reduction for the 16 GHz soliton comb, resulting in the lowest microwave noise observed in an integrated photonics platform. Our work represents a simple, effective approach for performing OFD and provides a pathway towards chip-scale devices that can generate microwave frequencies comparable to the purest tones produced in metrological laboratories.
光谱纯微波信号的产生是基础科学和应用科学中的一项关键功能,包括计量学和通信。光学频率梳使光学频率分割(OFD)技术能够产生最高质量的微波振荡。目前 OFD 的实现需要多个激光器,需要使用空间和能量消耗的光学稳定和电子反馈组件,导致设备足迹与集成到紧凑和强大的光子平台不兼容。在这里,我们通过用单个连续波激光泵浦两个不同的克尔微谐振器的动态状态来在光子芯片上演示全光学 OFD。光学参量振荡器的信号和闲频场之间的太赫兹拍频的固有稳定性被转移到克尔孤子梳的微波频率,并且通过耦合波导而无需电子锁定来实现同步。对于 227 GHz 和 16 GHz 的克尔孤子梳,分别实现了 OFD 因子 N = 34 和 468。特别是,OFD 使 16 GHz 孤子梳的相位噪声降低了 46 dB,从而在集成光子平台中观察到最低的微波噪声。我们的工作代表了一种简单有效的执行 OFD 的方法,并为能够产生与计量实验室中产生的最纯音调相当的微波频率的芯片级设备提供了途径。