Suppr超能文献

通过柠檬酸浸出实现磷酸铁锂阴极粉末的闭环回收

Closed-loop recycling of lithium iron phosphate cathodic powders via citric acid leaching.

作者信息

Bruno Martina, Francia Carlotta, Fiore Silvia

机构信息

Department of Environment, Land and Infrastructure Engineering, DIATI, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy.

DISAT, Department of Applied Sciences and Technology, Politecnico Di Torino, 10129, Turin, Italy.

出版信息

Environ Sci Pollut Res Int. 2024 Mar 11. doi: 10.1007/s11356-024-32837-6.

Abstract

Lithium recovery from Lithium-ion batteries requires hydrometallurgy but up-to-date technologies aren't economically viable for Lithium-Iron-Phosphate (LFP) batteries. Selective leaching (specifically targeting Lithium and based on mild organic acids and low temperatures) is attracting attention because of decreased environmental impacts compared to conventional hydrometallurgy. This study analysed the technical and economic performances of selective leaching with 6%vv. HO and citric acid (0.25-1 M, 25 °C, 1 h, 70 g/l) compared with conventional leaching with an inorganic acid (HSO 1 M, 40 °C, 2 h, 50 g/l) and an organic acid (citric acid 1 M, 25 °C, 1 h, 70 g/l) to recycle end of life LFP cathodes. After conventional leaching, chemical precipitation allowed to recover in multiple steps Li, Fe and P salts, while selective leaching allowed to recover Fe and P, in the leaching residues and required chemical precipitation only for lithium recovery. Conventional leaching with 1 M acids achieved leaching efficiencies equal to 95 ± 2% for Li, 98 ± 8% for Fe, 96 ± 3% for P with sulfuric acid and 83 ± 0.8% for Li, 8 ± 1% for Fe, 12 ± 5% for P with citric acid. Decreasing citric acid's concentration from 1 to 0.25 M didn't substantially change leaching efficiency. Selective leaching with citric acid has higher recovery efficiency (82 ± 6% for Fe, 74 ± 8% for P, 29 ± 5% for Li) than conventional leaching with sulfuric acid (69 ± 15% for Fe, 70 ± 18% for P, and 21 ± 2% for Li). Also, impurities' amounts were lower with citric acid (335 ± 19 335 ± 19 of S mg/kg of S) than with sulfuric acid (8104 ± 2403 mg/kg of S). In overall, the operative costs associated to 0.25 M citric acid route (3.17€/kg) were lower compared to 1 M sulfuric acid (3.52€/kg). In conclusion, citric acid could be a viable option to lower LFP batteries' recycling costs, and it should be further explored prioritizing Lithium recovery and purity of recovered materials.

摘要

从锂离子电池中回收锂需要采用湿法冶金,但目前的技术对于磷酸铁锂(LFP)电池在经济上并不可行。选择性浸出(特别是基于温和有机酸和低温针对锂进行浸出)由于与传统湿法冶金相比对环境的影响较小而备受关注。本研究分析了用6%vv. HO和柠檬酸(0.25 - 1 M,25℃,1小时,70 g/l)进行选择性浸出与用无机酸(1 M HSO₄,40℃,2小时,50 g/l)和有机酸(1 M柠檬酸,25℃,1小时,70 g/l)进行传统浸出以回收废旧LFP阴极的技术和经济性能。传统浸出后,化学沉淀可分多步回收锂、铁和磷盐,而选择性浸出可在浸出残渣中回收铁和磷,仅需化学沉淀来回收锂。用1 M酸进行传统浸出时,硫酸浸出锂的效率为95±2%、铁为98±8%、磷为96±3%;柠檬酸浸出锂的效率为83±0.8%、铁为8±1%、磷为12±5%。将柠檬酸浓度从1 M降至0.25 M并未显著改变浸出效率。用柠檬酸进行选择性浸出的回收效率(铁为82±6%、磷为74±8%、锂为29±5%)高于用硫酸进行传统浸出(铁为69±15%、磷为70±18%、锂为21±2%)。此外,柠檬酸浸出时杂质含量(硫为335±19 mg/kg)低于硫酸浸出时(硫为8104±2403 mg/kg)。总体而言,0.25 M柠檬酸路线的运营成本(3.17€/kg)低于1 M硫酸路线(3.52€/kg)。总之,柠檬酸可能是降低LFP电池回收成本的可行选择,应进一步探索,优先考虑锂的回收和回收材料的纯度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验