Suppr超能文献

分配随机化:一种实用的分数析因设计,用于在临床试验中筛选或评估多种同时进行的干预措施。

Distributive randomization: a pragmatic fractional factorial design to screen or evaluate multiple simultaneous interventions in a clinical trial.

作者信息

Haviari Skerdi, Mentré France

机构信息

Université Paris Cité, Inserm, IAME, Paris, 75018, France.

Département Epidémiologie Biostatistiques Et Recherche Clinique, AP-HP, Hôpital Bichat, Paris, 75018, France.

出版信息

BMC Med Res Methodol. 2024 Mar 11;24(1):64. doi: 10.1186/s12874-024-02191-9.

Abstract

BACKGROUND

In some medical indications, numerous interventions have a weak presumption of efficacy, but a good track record or presumption of safety. This makes it feasible to evaluate them simultaneously. This study evaluates a pragmatic fractional factorial trial design that randomly allocates a pre-specified number of interventions to each participant, and statistically tests main intervention effects. We compare it to factorial trials, parallel-arm trials and multiple head-to-head trials, and derive some good practices for its design and analysis.

METHODS

We simulated various scenarios involving 4 to 20 candidate interventions among which 2 to 8 could be simultaneously allocated. A binary outcome was assumed. One or two interventions were assumed effective, with various interactions (positive, negative, none). Efficient combinatorics algorithms were created. Sample sizes and power were obtained by simulations in which the statistical test was either difference of proportions or multivariate logistic regression Wald test with or without interaction terms for adjustment, with Bonferroni multiplicity-adjusted alpha risk for both. Native R code is provided without need for compiling or packages.

RESULTS

Distributive trials reduce sample sizes 2- to sevenfold compared to parallel arm trials, and increase them 1- to twofold compared to factorial trials, mostly when fewer allocations than for the factorial design are possible. An unexpectedly effective intervention causes small decreases in power (< 10%) if its effect is additive, but large decreases (possibly down to 0) if not, as for factorial designs. These large decreases are prevented by using interaction terms to adjust the analysis, but these additional estimands have a sample size cost and are better pre-specified. The issue can also be managed by adding a true control arm without any intervention.

CONCLUSION

Distributive randomization is a viable design for mass parallel evaluation of interventions in constrained trial populations. It should be introduced first in clinical settings where many undercharacterized interventions are potentially available, such as disease prevention strategies, digital behavioral interventions, dietary supplements for chronic conditions, or emerging diseases. Pre-trial simulations are recommended, for which tools are provided.

摘要

背景

在某些医学适应症中,许多干预措施的疗效推定较弱,但有良好的记录或安全性推定。这使得同时评估它们成为可能。本研究评估了一种实用的分数析因试验设计,该设计将预先指定数量的干预措施随机分配给每个参与者,并对主要干预效果进行统计检验。我们将其与析因试验、平行组试验和多个头对头试验进行比较,并得出其设计和分析的一些良好实践。

方法

我们模拟了各种场景,涉及4至20种候选干预措施,其中2至8种可以同时分配。假设为二元结局。假设一种或两种干预措施有效,存在各种相互作用(正向、负向、无)。创建了高效的组合算法。通过模拟获得样本量和检验效能,其中统计检验为比例差异或多元逻辑回归Wald检验,有或无交互项进行调整,两者均采用Bonferroni多重性调整后的α风险。提供了原生R代码,无需编译或安装包。

结果

分配试验与平行组试验相比,样本量减少2至7倍,与析因试验相比增加1至2倍,主要是在比析因设计可能的分配数量更少时。一个意外有效的干预措施,如果其效果是相加的,会导致检验效能小幅下降(<10%),但如果不是相加的,则会导致大幅下降(可能降至0),析因设计也是如此。通过使用交互项调整分析可以防止这些大幅下降,但这些额外的估计量会有样本量成本,并且最好预先指定。这个问题也可以通过添加一个没有任何干预的真正对照组来解决。

结论

分配随机化是在受限试验人群中对干预措施进行大规模平行评估的可行设计。它应该首先在临床环境中引入,在这些环境中可能有许多特征不明确的干预措施,如疾病预防策略、数字行为干预、慢性病膳食补充剂或新兴疾病。建议进行预试验模拟,并提供了相关工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4684/11340141/666088dc35c1/12874_2024_2191_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验