The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu University of Traditional Chinese Medicine, Gansu, China.
Department of Plastic Surgery, The Second Clinical College of Lanzhou University, Gansu, China.
Med Chem. 2024;20(7):733-740. doi: 10.2174/0115734064287922240222115200.
Osteosarcoma (OS) currently demonstrates a rising incidence, ranking as the predominant primary malignant tumor in the adolescent demographic. Notwithstanding this trend, the pharmaceutical landscape lacks therapeutic agents that deliver satisfactory efficacy against OS.
This study aimed to authenticate the outcomes of prior research employing the HM and GEP algorithms, endeavoring to expedite the formulation of efficacious therapeutics for osteosarcoma.
A robust quantitative constitutive relationship model was engineered to prognosticate the IC values of innovative synthetic compounds, harnessing the power of gene expression programming. A total of 39 natural products underwent optimization heuristic methodologies within the CODESSA software, resulting in the establishment of a linear model. Subsequent to this phase, a mere quintet of descriptors was curated for the generation of non-linear models through gene expression programming.
The squared correlation coefficients and 2 values derived from the heuristics stood at 0.5516 and 0.0195, respectively. Gene expression programming yielded squared correlation coefficients and mean square errors for the training set at 0.78 and 0.0085, respectively. For the test set, these values were determined to be 0.71 and 0.0121, respectively. The s2 of the heuristics for the training set was discerned to be 0.0085.
The analytic scrutiny of both algorithms underscores their commendable reliability in forecasting the efficacy of nascent compounds. A juxtaposition based on correlation coefficients elucidates that the GEP algorithm exhibits superior predictive prowess relative to the HM algorithm for novel synthetic compounds.
骨肉瘤(OS)目前的发病率呈上升趋势,在青少年人群中是主要的原发性恶性肿瘤。尽管如此,药物治疗领域仍缺乏对骨肉瘤有疗效的治疗药物。
本研究旨在验证之前使用 HM 和 GEP 算法进行的研究的结果,努力加速开发有效的骨肉瘤治疗药物。
构建了一个稳健的定量构效关系模型,利用基因表达编程预测新型合成化合物的 IC 值。共有 39 种天然产物在 CODESSA 软件中进行了优化启发式方法,建立了线性模型。在此阶段之后,通过基因表达编程仅选择了五个描述符来生成非线性模型。
启发式方法得出的平方相关系数和 2 值分别为 0.5516 和 0.0195。基因表达编程得出的训练集平方相关系数和均方误差分别为 0.78 和 0.0085。对于测试集,这些值分别为 0.71 和 0.0121。训练集启发式方法的 s2 为 0.0085。
对两种算法的分析表明,它们在预测新化合物的疗效方面具有可靠的能力。基于相关系数的比较表明,对于新型合成化合物,GEP 算法比 HM 算法具有更好的预测能力。