Suppr超能文献

一种由7T标记引导的用于3T脑磁共振图像分割的级联嵌套网络。

A cascaded nested network for 3T brain MR image segmentation guided by 7T labeling.

作者信息

Wei Jie, Wu Zhengwang, Wang Li, Bui Toan Duc, Qu Liangqiong, Yap Pew-Thian, Xia Yong, Li Gang, Shen Dinggang

机构信息

National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Pattern Recognit. 2022 Apr;124. doi: 10.1016/j.patcog.2021.108420. Epub 2021 Nov 6.

Abstract

Accurate segmentation of the brain into gray matter, white matter, and cerebrospinal fluid using magnetic resonance (MR) imaging is critical for visualization and quantification of brain anatomy. Compared to 3T MR images, 7T MR images exhibit higher tissue contrast that is contributive to accurate tissue delineation for training segmentation models. In this paper, we propose a cascaded nested network (CaNes-Net) for segmentation of 3T brain MR images, trained by tissue labels delineated from the corresponding 7T images. We first train a nested network (Nes-Net) for a rough segmentation. The second Nes-Net uses tissue-specific geodesic distance maps as contextual information to refine the segmentation. This process is iterated to build CaNes-Net with a cascade of Nes-Net modules to gradually refine the segmentation. To alleviate the misalignment between 3T and corresponding 7T MR images, we incorporate a correlation coefficient map to allow well-aligned voxels to play a more important role in supervising the training process. We compared CaNes-Net with SPM and FSL tools, as well as four deep learning models on 18 adult subjects and the ADNI dataset. Our results indicate that CaNes-Net reduces segmentation errors caused by the misalignment and improves segmentation accuracy substantially over the competing methods.

摘要

使用磁共振(MR)成像将大脑准确分割为灰质、白质和脑脊液,对于大脑解剖结构的可视化和量化至关重要。与3T MR图像相比,7T MR图像具有更高的组织对比度,这有助于准确划分组织以训练分割模型。在本文中,我们提出了一种用于分割3T脑MR图像的级联嵌套网络(CaNes-Net),该网络由从相应7T图像中勾勒出的组织标签进行训练。我们首先训练一个嵌套网络(Nes-Net)进行粗略分割。第二个Nes-Net使用组织特定的测地线距离图作为上下文信息来细化分割。这个过程会迭代进行,以构建具有一系列Nes-Net模块的CaNes-Net,从而逐步细化分割。为了减轻3T和相应7T MR图像之间的不对准,我们引入了一个相关系数图,以使对齐良好的体素在监督训练过程中发挥更重要的作用。我们将CaNes-Net与SPM和FSL工具以及四个深度学习模型在18名成年受试者和ADNI数据集上进行了比较。我们的结果表明,CaNes-Net减少了由不对准引起的分割误差,并且比竞争方法显著提高了分割精度。

相似文献

4
Reconstruction of 7T-Like Images From 3T MRI.从3T磁共振成像重建类似7T的图像。
IEEE Trans Med Imaging. 2016 Sep;35(9):2085-97. doi: 10.1109/TMI.2016.2549918. Epub 2016 Apr 1.
5
6
7T-Guided Learning Framework for Improving the Segmentation of 3T MR Images.用于改进3T磁共振图像分割的7T引导学习框架
Med Image Comput Comput Assist Interv. 2016 Oct;9901:572-580. doi: 10.1007/978-3-319-46723-8_66. Epub 2016 Oct 2.
10
7T-guided super-resolution of 3T MRI.7T 引导下的 3T MRI 超分辨率
Med Phys. 2017 May;44(5):1661-1677. doi: 10.1002/mp.12132. Epub 2017 Apr 22.

本文引用的文献

7
Multi-Atlas Segmentation of Anatomical Brain Structures Using Hierarchical Hypergraph Learning.使用分层超图学习的解剖脑结构的多图谱分割。
IEEE Trans Neural Netw Learn Syst. 2020 Aug;31(8):3061-3072. doi: 10.1109/TNNLS.2019.2935184. Epub 2019 Sep 5.
9
PSACNN: Pulse sequence adaptive fast whole brain segmentation.PSACNN:脉冲序列自适应快速全脑分割。
Neuroimage. 2019 Oct 1;199:553-569. doi: 10.1016/j.neuroimage.2019.05.033. Epub 2019 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验