IEEE Trans Neural Netw Learn Syst. 2020 Aug;31(8):3061-3072. doi: 10.1109/TNNLS.2019.2935184. Epub 2019 Sep 5.
Accurate segmentation of anatomical brain structures is crucial for many neuroimaging applications, e.g., early brain development studies and the study of imaging biomarkers of neurodegenerative diseases. Although multi-atlas segmentation (MAS) has achieved many successes in the medical imaging area, this approach encounters limitations in segmenting anatomical structures associated with poor image contrast. To address this issue, we propose a new MAS method that uses a hypergraph learning framework to model the complex subject-within and subject-to-atlas image voxel relationships and propagate the label on the atlas image to the target subject image. To alleviate the low-image contrast issue, we propose two strategies equipped with our hypergraph learning framework. First, we use a hierarchical strategy that exploits high-level context features for hypergraph construction. Because the context features are computed on the tentatively estimated probability maps, we can ultimately turn the hypergraph learning into a hierarchical model. Second, instead of only propagating the labels from the atlas images to the target subject image, we use a dynamic label propagation strategy that can gradually use increasing reliably identified labels from the subject image to aid in predicting the labels on the difficult-to-label subject image voxels. Compared with the state-of-the-art label fusion methods, our results show that the hierarchical hypergraph learning framework can substantially improve the robustness and accuracy in the segmentation of anatomical brain structures with low image contrast from magnetic resonance (MR) images.
准确分割解剖结构对于许多神经影像学应用至关重要,例如早期脑发育研究和神经退行性疾病成像生物标志物的研究。尽管多图谱分割 (MAS) 在医学成像领域取得了许多成功,但这种方法在分割与图像对比度差相关的解剖结构时遇到了限制。为了解决这个问题,我们提出了一种新的 MAS 方法,该方法使用超图学习框架来模拟复杂的主体-内部和主体-图谱图像体素关系,并将图谱图像上的标签传播到目标主体图像。为了缓解低图像对比度问题,我们在超图学习框架中提出了两种策略。首先,我们使用分层策略来利用高级上下文特征进行超图构建。由于上下文特征是在暂定的概率图上计算的,因此我们最终可以将超图学习转化为分层模型。其次,我们不仅将标签从图谱图像传播到目标主体图像,还使用动态标签传播策略,该策略可以逐渐使用越来越可靠地从主体图像识别出的标签来辅助预测在难以标记的主体图像体素上的标签。与最先进的标签融合方法相比,我们的结果表明,分层超图学习框架可以显著提高磁共振 (MR) 图像中低图像对比度解剖结构分割的鲁棒性和准确性。