Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.
J Am Soc Mass Spectrom. 2024 Apr 3;35(4):793-803. doi: 10.1021/jasms.4c00049. Epub 2024 Mar 12.
The opioid crisis in the United States is being fueled by the rapid emergence of new fentanyl analogs and precursors that can elude traditional library-based screening methods, which require data from known reference compounds. Since reference compounds are unavailable for new fentanyl analogs, we examined if fentanyls (fentanyl + fentanyl analogs) could be identified in a reference-free manner using a combination of electrospray ionization (ESI), high-resolution ion mobility (IM) spectrometry, high-resolution mass spectrometry (MS), and higher-energy collision-induced dissociation (MS/MS). We analyzed a mixture containing nine fentanyls and W-15 (a structurally similar molecule) and found that the protonated forms of all fentanyls exhibited two baseline-separated IM distributions that produced different MS/MS patterns. Upon fragmentation, both IM distributions of all fentanyls produced two high intensity fragments, resulting from amine site cleavages. The higher mobility distributions of all fentanyls also produced several low intensity fragments, but surprisingly, these same fragments exhibited much greater intensities in the lower mobility distributions. This observation demonstrates that many fragments of fentanyls predominantly originate from one of two different gas-phase structures (suggestive of protomers). Furthermore, increasing the water concentration in the ESI solution increased the intensity of the lower mobility distribution relative to the higher mobility distribution, which further supports that fentanyls exist as two gas-phase protomers. Our observations on the IM and MS/MS properties of fentanyls can be exploited to positively differentiate fentanyls from other compounds without requiring reference libraries and will hopefully assist first responders and law enforcement in combating new and emerging fentanyls.
美国的阿片类药物危机正受到新芬太尼类似物和前体的迅速出现所推动,这些类似物和前体可以规避基于传统文库的筛选方法,而这些方法需要已知参考化合物的数据。由于没有新芬太尼类似物的参考化合物,我们研究了是否可以在没有参考的情况下使用电喷雾电离 (ESI)、高分辨率离子淌度 (IM) 光谱、高分辨率质谱 (MS) 和更高能量碰撞诱导解离 (MS/MS) 的组合来识别芬太尼(芬太尼+芬太尼类似物)。我们分析了包含九种芬太尼和 W-15(一种结构相似的分子)的混合物,发现所有芬太尼的质子化形式都表现出两个基线分离的 IM 分布,产生不同的 MS/MS 模式。在碎片化过程中,所有芬太尼的两个 IM 分布都产生了两个高强度片段,这是由于胺位点的裂解。所有芬太尼的更高迁移率分布也产生了几个低强度片段,但令人惊讶的是,这些相同的片段在较低迁移率分布中表现出更高的强度。这一观察表明,许多芬太尼的片段主要源自两种不同气相结构中的一种(暗示有前体)。此外,增加 ESI 溶液中的水浓度会增加低迁移率分布相对于高迁移率分布的强度,这进一步支持芬太尼以两种气相前体的形式存在。我们对芬太尼的 IM 和 MS/MS 特性的观察可以被利用来在不需要参考文库的情况下,将芬太尼与其他化合物区分开来,并有望帮助急救人员和执法人员打击新出现的芬太尼。