Suppr超能文献

调整全气候钠离子电池的电解质和界面化学

Tuning the Electrolyte and Interphasial Chemistry for All-Climate Sodium-ion Batteries.

作者信息

He Mengxue, Zhu Lujun, Ye Guo, An Yun, Hong Xufeng, Ma Yue, Xiao Zhitong, Jia Yongfeng, Pang Quanquan

机构信息

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.

出版信息

Angew Chem Int Ed Engl. 2024 May 21;63(21):e202401051. doi: 10.1002/anie.202401051. Epub 2024 Apr 3.

Abstract

Sodium-ion batteries (SIBs) present a promising avenue for next-generation grid-scale energy storage. However, realizing all-climate SIBs operating across a wide temperature range remains a challenge due to the poor electrolyte conductivity and instable electrode interphases at extreme temperatures. Here, we propose a comprehensively balanced electrolyte by pairing carbonates with a low-freezing-point and low-polarity ethyl propionate solvent which enhances ion diffusion and Na-desolvation kinetics at sub-zero temperatures. Furthermore, the electrolyte leverages a combinatorial borate- and nitrile-based additive strategy to facilitate uniform and inorganic-rich electrode interphases, ensuring excellent rate performance and cycle stability over a wide temperature range from -45 °C to 60 °C. Notably, the Na||sodium vanadyl phosphate cell delivers a remarkable capacity of 105 mAh g with a high rate of 2 C at -25 °C. In addition, the cells exhibit excellent cycling stability over a wide temperature range, maintaining a high capacity retention of 84.7 % over 3,000 cycles at 60 °C and of 95.1 % at -25 °C over 500 cycles. The full cell also exhibits impressive cycling performance over a wide temperature range. This study highlights the critical role of electrolyte and interphase engineering for enabling SIBs that function optimally under diverse and extreme climatic environments.

摘要

钠离子电池(SIBs)为下一代电网规模的储能提供了一条很有前景的途径。然而,由于在极端温度下电解质导电性差和电极界面不稳定,实现能在宽温度范围内运行的全气候钠离子电池仍然是一个挑战。在此,我们通过将碳酸盐与低冰点、低极性的丙酸乙酯溶剂配对,提出了一种全面平衡的电解质,该电解质可增强零下温度下的离子扩散和钠去溶剂化动力学。此外,该电解质利用基于硼酸盐和腈的组合添加剂策略,促进形成均匀且富含无机物的电极界面,确保在从-45°C到60°C的宽温度范围内具有出色的倍率性能和循环稳定性。值得注意的是,Na||磷酸钒钠电池在-25°C下以2C的高倍率提供了105 mAh g的显著容量。此外,这些电池在宽温度范围内表现出出色的循环稳定性,在60°C下3000次循环中保持84.7%的高容量保持率,在-25°C下500次循环中保持95.1%的高容量保持率。全电池在宽温度范围内也表现出令人印象深刻的循环性能。这项研究突出了电解质和界面工程对于使钠离子电池在多样和极端气候环境下实现最佳功能的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验