Liang Haichen, Liu Liangliang, Wang Nan, Zhang Wei, Hung Chin-Te, Zhang Xingmiao, Zhang Zhenghao, Duan Linlin, Chao Dongliang, Wang Fei, Xia Yongyao, Li Wei, Zhao Dongyuan
Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials Science, Fudan University, Shanghai, 200433, P. R. China.
Zhuhai Fudan Innovation Institute, Guangdong-Macao In-Depth Cooperation Zone, Hengqin, Zhuhai, 51900, P. R. China.
Adv Mater. 2022 Jul;34(28):e2202873. doi: 10.1002/adma.202202873. Epub 2022 Jun 6.
Sodium-ion batteries (SIBs) are a promising candidate for grid-scale energy storage, however, the sluggish ion-diffusion kinetics brought by the large radius of Na seriously limits the performance of SIBs, let alone at low temperatures. Herein, a confined acid-base pair self-assembly strategy to synthesize unusual Ti Nb O @C for high-performance SIBs operating at room and low temperatures is proposed. The confinement self-assembly of the acid-base pair around the micelles and confined crystallization by the carbon layer realize the formation of ordered and stoichiometric mesoporous frameworks with opened ion channels. Thus, the mesoporous Ti Nb O @C exhibits rapid Na diffusion kinetics at 25 and -40 °C, which are one order higher than that of the nonporous one. A high reversible capacity of 233 mAh g , excellent rate (a specific capacity of 103 mAh g at 50 C), and cycling performances (<0.03% fading per cycle) can be observed at 25 °C. More importantly, even at -40 °C, the mesoporous Ti Nb O @C can still deliver the 161 mAh g capacity, a high initial Coulombic efficiency of 60% and outstanding cycling stability (99 mAh g at 0.5 C after 500 cycles). It is believed this strategy opens a new avenue for constructing novel mesoporous electrode materials for low-temperature energy storage.
钠离子电池(SIBs)是电网规模储能的一个有前景的候选者,然而,Na的大半径所带来的缓慢离子扩散动力学严重限制了SIBs的性能,更不用说在低温下了。在此,提出了一种受限酸碱对自组装策略,用于合成用于在室温和低温下运行的高性能SIBs的非常规Ti Nb O @C。酸碱对围绕胶束的受限自组装以及碳层的受限结晶实现了具有开放离子通道的有序且化学计量的介孔框架的形成。因此,介孔Ti Nb O @C在25℃和-40℃下表现出快速的Na扩散动力学,比无孔材料高一个数量级。在25℃下可观察到233 mAh g的高可逆容量、优异的倍率性能(在50 C时比容量为103 mAh g)和循环性能(每循环<0.03%的衰减)。更重要的是,即使在-40℃下,介孔Ti Nb O @C仍可提供161 mAh g的容量、60%的高初始库仑效率和出色的循环稳定性(500次循环后在0.5 C下为99 mAh g)。相信这种策略为构建用于低温储能的新型介孔电极材料开辟了一条新途径。