Hervio Valentine, Brûlet Annie, Creton Costantino, Sanoja Gabriel E
Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS UMR 7615, Sorbonne Université, 75005, Paris, France.
Laboratoire Léon Brillouin, UMR 12 CEA-CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France.
Soft Matter. 2024 Mar 27;20(13):2978-2985. doi: 10.1039/d3sm01630g.
Nitrile rubber (, NBR) is a crosslinked copolymer of butadiene and acrylonitrile that finds widespread use in the automotive and aerospace industry as it sustains large, reversible deformations while resisting swelling by petrochemical fuels. We recently demonstrated that this material has a drift in composition due to the difference in reactivity between acrylonitrile and butadiene monomers during emulsion copolymerisation. Thus, although NBR is often thought of as a random copolymer, it does experience thermodynamic driving forces for self-assembly and kinetic barriers for processing like those of block copolymers. Here, we illustrate how such drift in composition hinders interdiffusion and prevents self-adhesion. The key result is that contacting uncrosslinked NBR (i) in the melt, (ii) in the presence of tackifiers, or (iii) in the presence of organic solvents promotes interdiffusion and enables self-adhesion. However, the contact times required for self-adhering, ∼ (100 h), are orders of magnitude above those needed for non-polar synthetic rubbers like styrene-butadiene rubber (, SBR) of comparable molecular weights and glass transition temperatures, ∼ (100 s), unveiling the dramatic effect of compositional inhomogeneities and physical associations on polymer interdiffusion and large-strain mechanical properties. For example, when welded with organic solvents, the self-adhesion energy of NBR continues to increase after the solvent has evaporated because of polymer nanostructuring.
丁腈橡胶(NBR)是丁二烯和丙烯腈的交联共聚物,因其在承受大的可逆变形的同时能抵抗石化燃料的溶胀,而在汽车和航空航天工业中得到广泛应用。我们最近证明,由于乳液共聚过程中丙烯腈和丁二烯单体反应活性的差异,这种材料存在组成漂移。因此,尽管丁腈橡胶通常被认为是无规共聚物,但它确实会经历自组装的热力学驱动力和类似于嵌段共聚物的加工动力学障碍。在这里,我们说明了这种组成漂移如何阻碍相互扩散并防止自粘。关键结果是,使未交联的丁腈橡胶(i)在熔体中、(ii)在增粘剂存在下或(iii)在有机溶剂存在下接触,会促进相互扩散并实现自粘。然而,自粘所需的接触时间约为(100小时),比分子量和玻璃化转变温度相当的非极性合成橡胶如丁苯橡胶(SBR)所需的接触时间(约100秒)高出几个数量级,这揭示了组成不均匀性和物理缔合对聚合物相互扩散和大应变力学性能的显著影响。例如,当用有机溶剂焊接时,由于聚合物纳米结构的形成,丁腈橡胶在溶剂蒸发后自粘能继续增加。