Suppr超能文献

微工程心脏组织芯片与异质细胞组成显示自组织和改善心脏功能。

Micro-Engineered Heart Tissues On-Chip with Heterotypic Cell Composition Display Self-Organization and Improved Cardiac Function.

机构信息

Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands.

River BioMedics B.V, Enschede, 7522 NB, The Netherlands.

出版信息

Adv Healthc Mater. 2024 Jul;13(18):e2303664. doi: 10.1002/adhm.202303664. Epub 2024 Mar 20.

Abstract

Advanced in vitro models that recapitulate the structural organization and function of the human heart are highly needed for accurate disease modeling, more predictable drug screening, and safety pharmacology. Conventional 3D Engineered Heart Tissues (EHTs) lack heterotypic cell complexity and culture under flow, whereas microfluidic Heart-on-Chip (HoC) models in general lack the 3D configuration and accurate contractile readouts. In this study, an innovative and user-friendly HoC model is developed to overcome these limitations, by culturing human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs), endothelial (ECs)- and smooth muscle cells (SMCs), together with human cardiac fibroblasts (FBs), underflow, leading to self-organized miniaturized micro-EHTs (µEHTs) with a CM-EC interface reminiscent of the physiological capillary lining. µEHTs cultured under flow display enhanced contractile performance and conduction velocity. In addition, the presence of the EC layer altered drug responses in µEHT contraction. This observation suggests a potential barrier-like function of ECs, which may affect the availability of drugs to the CMs. These cardiac models with increased physiological complexity, will pave the way to screen for therapeutic targets and predict drug efficacy.

摘要

需要先进的体外模型来重现人类心脏的结构组织和功能,以便更准确地进行疾病建模、更具预测性的药物筛选和安全药理学研究。传统的三维工程心脏组织 (EHT) 缺乏异质细胞复杂性和流动条件下的培养,而微流控心脏芯片 (HoC) 模型通常缺乏 3D 结构和准确的收缩测量。在这项研究中,开发了一种创新且易于使用的 HoC 模型,通过在流动条件下培养人多能干细胞 (hPSC) 衍生的心肌细胞 (CM)、内皮细胞 (EC) 和平滑肌细胞 (SMC),以及人心房成纤维细胞 (FB),实现了自组织的小型化微 EHT (µEHT),其中 CM-EC 界面类似于生理毛细血管衬里。在流动条件下培养的 µEHT 显示出增强的收缩性能和传导速度。此外,EC 层的存在改变了 µEHT 收缩中的药物反应。这一观察结果表明 EC 具有潜在的屏障功能,可能会影响药物对 CM 的可用性。这些具有更高生理复杂性的心脏模型将为筛选治疗靶点和预测药物疗效铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验