Caceres-Martinez Louis Edwards, Kilaz Gozdem
School of Engineering Technology, Purdue University, West Lafayette, Indiana, USA.
J Sep Sci. 2024 Mar;47(5):e2300816. doi: 10.1002/jssc.202300816.
This work presents an accurate yet simplified partial least squares model to predict the kinematic viscosity of conventional and alternative jet fuels at -20°C using comprehensive two-dimensional gas chromatography coupled to a flame ionization detector (GC × GC/FID). Three different normalization methods (mean-centering, logarithmic, and Yeo-Johnson) were evaluated to identify their impact in the prediction of middle distillates' physical properties. Results using Yeo-Johnson transformation exhibited improved viscosity prediction capabilities over the validation set with a mean absolute percentage error of 5.3%, a root-mean-squared error of 0.23, and a coefficient of determination (R ) of 0.9404 using only 10 latent variables. Unlike previously reported correlations, this model allowed the identification of specific hydrocarbon groups and carbon numbers that drive jet fuel viscosity at low temperatures. The presence of even small amounts of large branched-alkanes (C -C ), dicyclic-alkanes (C ), and cycloaromatics (C ) have the potential to strongly increase the kinematic viscosity of jet fuels. Contrastingly, light monocycloalkanes and branched-alkanes (≤ C ) were associated with lower viscosity values. Novelly, this model suggests the implementation of Yeo-Johnson transformations to predict the physical properties of middle distillates to further improve the performance metrics of partial least squares models based on GC data.
本研究提出了一种精确而简化的偏最小二乘模型,用于使用全二维气相色谱-火焰离子化检测器(GC×GC/FID)预测常规喷气燃料和替代喷气燃料在-20°C时的运动粘度。评估了三种不同的归一化方法(均值中心化、对数变换和Yeo-Johnson变换),以确定它们对中间馏分物理性质预测的影响。使用Yeo-Johnson变换的结果在验证集上表现出更好的粘度预测能力,平均绝对百分比误差为5.3%,均方根误差为0.23,仅使用10个潜变量时的决定系数(R)为0.9404。与先前报道的相关性不同,该模型能够识别在低温下影响喷气燃料粘度的特定烃类基团和碳数。即使存在少量的大支链烷烃(C -C)、二环烷烃(C)和环芳烃(C)也有可能显著增加喷气燃料的运动粘度。相反,轻质单环烷烃和支链烷烃(≤C)与较低的粘度值相关。新颖的是,该模型建议采用Yeo-Johnson变换来预测中间馏分的物理性质,以进一步提高基于GC数据的偏最小二乘模型的性能指标。