Burt April J, Vogt-Vincent Noam, Johnson Helen, Sendell-Price Ashley, Kelly Steve, Clegg Sonya M, Head Catherine, Bunbury Nancy, Fleischer-Dogley Frauke, Jeremie Marie-May, Khan Nasreen, Baxter Richard, Gendron Gilberte, Mason-Parker Christophe, Walton Rowana, Turnbull Lindsay A
Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK.
Seychelles Islands Foundation, Mont Fleuri, Mahé, Seychelles.
Sci Rep. 2024 Mar 12;14(1):4936. doi: 10.1038/s41598-024-55459-x.
Many countries with tropical reef systems face hard choices preserving coral reefs in the face of climate change on limited budgets. One approach to maximising regional reef resilience is targeting management efforts and resources at reefs that export large numbers of larvae to other reefs. However, this requires reef connectivity to be quantified. To map coral connectivity in the Seychelles reef system we carried out a population genomic study of the Porites lutea species complex using 241 sequenced colonies from multiple islands. To identify oceanographic drivers of this connectivity and quantify variability, we further used a 2 km resolution regional ocean simulation coupled with a larval dispersal model to predict the flow of coral larvae between reef sites. Patterns of admixture and gene flow are broadly supported by model predictions, but the realised connectivity is greater than that predicted from model simulations. Both methods detected a biogeographic dispersal barrier between the Inner and Outer Islands of Seychelles. However, this barrier is permeable and substantial larval transport is possible across Seychelles, particularly for one of two putative species found in our genomic study. The broad agreement between predicted connectivity and observed genetic patterns supports the use of such larval dispersal simulations in reef system management in Seychelles and the wider region.
许多拥有热带珊瑚礁系统的国家在预算有限的情况下,面临着在气候变化面前保护珊瑚礁的艰难抉择。一种使区域珊瑚礁恢复力最大化的方法是,将管理工作和资源集中于那些向其他珊瑚礁输出大量幼体的珊瑚礁。然而,这需要对珊瑚礁的连通性进行量化。为了绘制塞舌尔珊瑚礁系统中的珊瑚连通性图谱,我们对多孔鹿角珊瑚物种复合体进行了群体基因组研究,使用了来自多个岛屿的241个测序群体。为了确定这种连通性的海洋学驱动因素并量化变异性,我们进一步使用了分辨率为2公里的区域海洋模拟,并结合幼体扩散模型来预测珊瑚礁站点之间珊瑚幼体的流动。混合模式和基因流动模式在很大程度上得到了模型预测的支持,但实际的连通性大于模型模拟预测的连通性。两种方法都检测到了塞舌尔内岛和外岛之间的生物地理扩散障碍。然而,这个障碍是可渗透的,大量的幼体运输有可能跨越塞舌尔,特别是对于我们基因组研究中发现的两个假定物种之一。预测的连通性和观察到的遗传模式之间的广泛一致性,支持在塞舌尔及更广泛区域的珊瑚礁系统管理中使用这种幼体扩散模拟。