Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
The Donnelly Centre, University of Toronto, Toronto, ON, Canada.
Mol Syst Biol. 2024 May;20(5):521-548. doi: 10.1038/s44320-024-00029-6. Epub 2024 Mar 12.
Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website ( https://thecellvision.org/pifia/ ), PIFiA is a resource for the quantitative analysis of protein organization within the cell.
荧光显微镜数据以单细胞分辨率描述蛋白质定位模式,具有以显著的精度揭示全蛋白质组功能信息的潜力。然而,从细胞显微图像中提取有生物学意义的表示仍然是一个主要挑战。现有的方法往往无法学习稳健且不受噪声影响的特征,或者依赖于监督标签进行准确注释。我们开发了 PIFiA(基于蛋白质图像的功能注释),这是一种从单细胞成像数据中进行蛋白质功能注释的自监督方法。我们对全球酵母 ORF-GFP 集合进行了成像,并应用 PIFiA 从荧光标记蛋白质的单细胞图像中生成蛋白质特征图谱。我们表明,PIFiA 在分子表示学习方面优于现有方法,并描述了一系列下游分析任务,以探索特征图谱的信息含量。具体来说,我们将提取的特征聚类为功能组织的层次结构,研究细胞群体异质性,并开发区分多定位蛋白质和识别功能模块的技术。最后,我们使用共定位测定法证实了新的 PIFiA 预测,这表明了几种蛋白质以前未被重视的生物学作用。与一个完全交互式网站(https://thecellvision.org/pifia/)配对,PIFiA 是细胞内蛋白质组织的定量分析资源。