HUN-REN Biological Research Centre, 62 Temesvári krt, Szeged, 6726, Hungary.
Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA.
Nat Commun. 2024 Feb 21;15(1):1594. doi: 10.1038/s41467-024-45999-1.
Measuring the phenotypic effect of treatments on cells through imaging assays is an efficient and powerful way of studying cell biology, and requires computational methods for transforming images into quantitative data. Here, we present an improved strategy for learning representations of treatment effects from high-throughput imaging, following a causal interpretation. We use weakly supervised learning for modeling associations between images and treatments, and show that it encodes both confounding factors and phenotypic features in the learned representation. To facilitate their separation, we constructed a large training dataset with images from five different studies to maximize experimental diversity, following insights from our causal analysis. Training a model with this dataset successfully improves downstream performance, and produces a reusable convolutional network for image-based profiling, which we call Cell Painting CNN. We evaluated our strategy on three publicly available Cell Painting datasets, and observed that the Cell Painting CNN improves performance in downstream analysis up to 30% with respect to classical features, while also being more computationally efficient.
通过成像分析来衡量处理对细胞的表型效应是研究细胞生物学的一种有效且强大的方法,这需要计算方法将图像转换为定量数据。在这里,我们提出了一种从高通量成像中学习处理效应表示的改进策略,遵循因果解释。我们使用弱监督学习来模拟图像和处理之间的关联,并表明它在学习的表示中同时编码了混杂因素和表型特征。为了便于分离,我们构建了一个包含来自五个不同研究的图像的大型训练数据集,以最大程度地提高实验多样性,这是根据我们的因果分析得出的见解。使用这个数据集训练模型成功地提高了下游性能,并产生了一个可重复使用的基于图像的分析卷积网络,我们称之为 Cell Painting CNN。我们在三个公开的 Cell Painting 数据集上评估了我们的策略,观察到 Cell Painting CNN 可以将下游分析的性能提高高达 30%,而与经典特征相比,它的计算效率也更高。