Suppr超能文献

跨域网络分析(TkNA):一种用于推断宿主-微生物群和其他多组学相互作用的因果因素的系统框架。

Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host-microbiota and other multi-omic interactions.

机构信息

College of Pharmacy, Oregon State University, Corvallis, OR, USA.

Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

出版信息

Nat Protoc. 2024 Jun;19(6):1750-1778. doi: 10.1038/s41596-024-00960-w. Epub 2024 Mar 12.

Abstract

We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host-microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network's topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ .

摘要

我们提出了跨域网络分析(TkNA),这是一种独特的因果推理分析框架,通过整合来自多个队列和多种组学类型的数据,提供了对生物系统的整体视图。TkNA 有助于破译在特定条件或疾病下,调控宿主-微生物群(或任何多组学数据)相互作用的关键参与者和机制。TkNA 构建了一个网络,该网络代表了一个统计模型,捕获了生物系统中不同组学之间的复杂关系。它确定了跨多个队列的方向和相关性符号的稳健和可重复的折叠变化模式,以选择差异特征及其组间相关性。然后,该框架使用因果敏感的度量、统计阈值和拓扑标准来确定形成跨域网络的最终边缘。通过随后的网络拓扑特征,TkNA 确定控制给定子网或调控王国和/或子网之间通信的节点。TkNA 中重建网络所需的数百万个相关性的计算时间通常只需几分钟,具体取决于研究设计。与大多数只发现关联的其他多组学方法不同,TkNA 专注于在考虑多组学数据的复杂结构的同时建立因果关系。它不需要大量的样本量就可以实现这一点。此外,TkNA 协议易于使用,只需要最小的安装和对 Unix 的基本熟悉。研究人员可以在 https://github.com/CAnBioNet/TkNA/ 访问 TkNA 软件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验