Suppr超能文献

基于视觉Transformer的超声图像分析——综述

Ultrasound Image Analysis with Vision Transformers-Review.

作者信息

Vafaeezadeh Majid, Behnam Hamid, Gifani Parisa

机构信息

Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran 1311416846, Iran.

Medical Sciences and Technologies Department, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.

出版信息

Diagnostics (Basel). 2024 Mar 4;14(5):542. doi: 10.3390/diagnostics14050542.

Abstract

Ultrasound (US) has become a widely used imaging modality in clinical practice, characterized by its rapidly evolving technology, advantages, and unique challenges, such as a low imaging quality and high variability. There is a need to develop advanced automatic US image analysis methods to enhance its diagnostic accuracy and objectivity. Vision transformers, a recent innovation in machine learning, have demonstrated significant potential in various research fields, including general image analysis and computer vision, due to their capacity to process large datasets and learn complex patterns. Their suitability for automatic US image analysis tasks, such as classification, detection, and segmentation, has been recognized. This review provides an introduction to vision transformers and discusses their applications in specific US image analysis tasks, while also addressing the open challenges and potential future trends in their application in medical US image analysis. Vision transformers have shown promise in enhancing the accuracy and efficiency of ultrasound image analysis and are expected to play an increasingly important role in the diagnosis and treatment of medical conditions using ultrasound imaging as technology progresses.

摘要

超声(US)已成为临床实践中广泛使用的成像方式,其特点是技术快速发展、具有优势以及存在独特挑战,如成像质量低和变异性高。需要开发先进的自动超声图像分析方法,以提高其诊断准确性和客观性。视觉Transformer是机器学习领域的一项最新创新,由于其能够处理大型数据集并学习复杂模式,已在包括通用图像分析和计算机视觉在内的各个研究领域展现出巨大潜力。它们适用于自动超声图像分析任务,如图像分类、检测和分割,这一点已得到认可。本综述介绍了视觉Transformer,并讨论了它们在特定超声图像分析任务中的应用,同时还探讨了其在医学超声图像分析应用中面临的开放性挑战和潜在的未来趋势。随着技术的进步,视觉Transformer在提高超声图像分析的准确性和效率方面已显示出前景,并有望在使用超声成像的医疗状况诊断和治疗中发挥越来越重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/10931322/f68b02715125/diagnostics-14-00542-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验