Suppr超能文献

利用聚焦于视觉Transformer、Swin Transformer和ConvNeXt的先进深度学习模型增强黑色素瘤诊断

Enhancing Melanoma Diagnosis with Advanced Deep Learning Models Focusing on Vision Transformer, Swin Transformer, and ConvNeXt.

作者信息

Aksoy Serra, Demircioglu Pinar, Bogrekci Ismail

机构信息

Institute of Computer Science, Ludwig Maximilian University of Munich (LMU), Oettingenstrasse 67, 80538 Munich, Germany.

Institute of Materials Science, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching b. Munich, Germany.

出版信息

Dermatopathology (Basel). 2024 Aug 15;11(3):239-252. doi: 10.3390/dermatopathology11030026.

Abstract

Skin tumors, especially melanoma, which is highly aggressive and progresses quickly to other sites, are an issue in various parts of the world. Nevertheless, the one and only way to save lives is to detect it at its initial stages. This study explores the application of advanced deep learning models for classifying benign and malignant melanoma using dermoscopic images. The aim of the study is to enhance the accuracy and efficiency of melanoma diagnosis with the ConvNeXt, Vision Transformer (ViT) Base-16, and Swin Transformer V2 Small (Swin V2 S) deep learning models. The ConvNeXt model, which integrates principles of both convolutional neural networks and transformers, demonstrated superior performance, with balanced precision and recall metrics. The dataset, sourced from Kaggle, comprises 13,900 uniformly sized images, preprocessed to standardize the inputs for the models. Experimental results revealed that ConvNeXt achieved the highest diagnostic accuracy among the tested models. Experimental results revealed that ConvNeXt achieved an accuracy of 91.5%, with balanced precision and recall rates of 90.45% and 92.8% for benign cases, and 92.61% and 90.2% for malignant cases, respectively. The F1-scores for ConvNeXt were 91.61% for benign cases and 91.39% for malignant cases. This research points out the potential of hybrid deep learning architectures in medical image analysis, particularly for early melanoma detection.

摘要

皮肤肿瘤,尤其是黑色素瘤,具有高度侵袭性且会迅速扩散至身体其他部位,这在世界各个地区都是一个问题。然而,挽救生命的唯一方法是在其初始阶段就检测到它。本研究探索了先进的深度学习模型在利用皮肤镜图像对良性和恶性黑色素瘤进行分类方面的应用。该研究的目的是通过ConvNeXt、视觉Transformer(ViT)Base - 16和Swin Transformer V2 Small(Swin V2 S)深度学习模型提高黑色素瘤诊断的准确性和效率。结合了卷积神经网络和Transformer原理的ConvNeXt模型表现出卓越的性能,其精确率和召回率指标较为平衡。该数据集来自Kaggle,包含13900张尺寸统一的图像,经过预处理以标准化模型的输入。实验结果表明,ConvNeXt在测试模型中实现了最高的诊断准确率。实验结果显示,ConvNeXt的准确率达到91.5%,良性病例的精确率和召回率分别为90.45%和92.8%,恶性病例的精确率和召回率分别为92.61%和90.2%。ConvNeXt良性病例的F1分数为91.61%,恶性病例的F1分数为91.39%。这项研究指出了混合深度学习架构在医学图像分析中的潜力,特别是在早期黑色素瘤检测方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a86/11348198/47480329950c/dermatopathology-11-00026-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验