Machín Abniel, Morant Carmen, Soto-Vázquez Loraine, Resto Edgard, Ducongé José, Cotto María, Berríos-Rolón Pedro J, Martínez-Perales Cristian, Márquez Francisco
Environmental Catalysis Research Lab, Division of Science, Technology and Environment, Cupey Campus, Universidad Ana G. Méndez, Cupey, PR 00926, USA.
Department of Applied Physics, Autonomous University of Madrid, and Instituto de Ciencia de Materiales Nicolás Cabrera, 28049 Madrid, Spain.
Materials (Basel). 2024 Feb 25;17(5):1059. doi: 10.3390/ma17051059.
This research evaluates the efficacy of catalysts based on CoO-gCN@ZnONPs in the degradation of ciprofloxacin (CFX) and the photocatalytic production of H through water splitting. The results show that CFX experiences prompt photodegradation, with rates reaching up to 99% within 60 min. Notably, the 5% (CoO-gCN)@ZnONPs emerged as the most potent catalyst. The recyclability studies of the catalyst revealed a minimal activity loss, approximately 6%, after 15 usage cycles. Using gas chromatography-mass spectrometry (GC-MS) techniques, the by-products of CFX photodegradation were identified, which enabled the determination of the potential degradation pathway and its resultant products. Comprehensive assessments involving photoluminescence, bandgap evaluations, and the study of scavenger reactions revealed a degradation mechanism driven primarily by superoxide radicals. Moreover, the catalysts demonstrated robust performance in H photocatalytic production, with some achieving outputs as high as 1407 µmol/hg in the visible spectrum (around 500 nm). Such findings underline the potential of these materials in environmental endeavors, targeting both water purification from organic pollutants and energy applications.
本研究评估了基于CoO-gCN@ZnONPs的催化剂在降解环丙沙星(CFX)以及通过水分解光催化产氢方面的功效。结果表明,CFX能迅速发生光降解,60分钟内降解率高达99%。值得注意的是,5%(CoO-gCN)@ZnONPs是最有效的催化剂。对该催化剂的可回收性研究表明,经过15次使用循环后,活性损失极小,约为6%。利用气相色谱-质谱(GC-MS)技术鉴定了CFX光降解的副产物,从而确定了潜在的降解途径及其产物。包括光致发光、带隙评估和清除剂反应研究在内的综合评估揭示了主要由超氧自由基驱动的降解机制。此外,这些催化剂在光催化产氢方面表现出强劲性能,在可见光谱(约500纳米)中,有些催化剂的产氢量高达1407微摩尔/小时·克。这些发现凸显了这些材料在环境领域的潜力,既可以用于从有机污染物中净化水,也可用于能源应用。