Suppr超能文献

预分割下采样加速基于图神经网络的自动驾驶3D目标检测

Pre-Segmented Down-Sampling Accelerates Graph Neural Network-Based 3D Object Detection in Autonomous Driving.

作者信息

Liang Zhenming, Huang Yingping, Bai Yanbiao

机构信息

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

Sensors (Basel). 2024 Feb 23;24(5):1458. doi: 10.3390/s24051458.

Abstract

Graph neural networks (GNNs) have been proven to be an ideal approach to deal with irregular point clouds, but involve massive computations for searching neighboring points in the graph, which limits their application in large-scale LiDAR point cloud processing. Down-sampling is a straightforward and indispensable step in current GNN-based 3D detectors to reduce the computational burden of the model, but the commonly used down-sampling methods cannot distinguish the categories of the LiDAR points, which leads to an inability to effectively improve the computational efficiency of the GNN models without affecting their detection accuracy. In this paper, we propose (1) a LiDAR point cloud pre-segmented down-sampling (PSD) method that can selectively reduce background points while preserving the foreground object points during the process, greatly improving the computational efficiency of the model without affecting its 3D detection accuracy. (2) A lightweight GNN-based 3D detector that can extract point features and detect objects from the raw down-sampled LiDAR point cloud directly without any pre-transformation. We test the proposed model on the KITTI 3D Object Detection Benchmark, and the results demonstrate its effectiveness and efficiency for autonomous driving 3D object detection.

摘要

图神经网络(GNN)已被证明是处理不规则点云的理想方法,但在图中搜索邻域点时涉及大量计算,这限制了它们在大规模激光雷达点云处理中的应用。下采样是当前基于GNN的3D检测器中一个直接且不可或缺的步骤,用于减轻模型的计算负担,但常用的下采样方法无法区分激光雷达点的类别,这导致在不影响其检测精度的情况下,无法有效提高GNN模型的计算效率。在本文中,我们提出:(1)一种激光雷达点云预分割下采样(PSD)方法,该方法在处理过程中可以选择性地减少背景点,同时保留前景对象点,在不影响其3D检测精度的情况下,极大地提高了模型的计算效率。(2)一种基于轻量级GNN的3D检测器,它可以直接从原始下采样的激光雷达点云中提取点特征并检测对象,无需任何预变换。我们在KITTI 3D目标检测基准上测试了所提出的模型,结果证明了其在自动驾驶3D目标检测中的有效性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c991/10934771/38fa16f9b0d2/sensors-24-01458-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验