Suppr超能文献

基于多级标记和线性自抗扰控制的四旋翼无人机自主着陆

Autonomous Landing of Quadrotor Unmanned Aerial Vehicles Based on Multi-Level Marker and Linear Active Disturbance Reject Control.

作者信息

Lv Mingming, Fan Bo, Fang Jiwen, Wang Jia

机构信息

School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

Fujian Key Laboratory of Green Intelligent Drive and Transmission for Mobile Machinery, Xiamen 361021, China.

出版信息

Sensors (Basel). 2024 Mar 2;24(5):1645. doi: 10.3390/s24051645.

Abstract

Landing on unmanned surface vehicles (USV) autonomously is a critical task for unmanned aerial vehicles (UAV) due to complex environments. To solve this problem, an autonomous landing method is proposed based on a multi-level marker and linear active disturbance rejection control (LADRC) in this study. A specially designed landing board is placed on the USV, and ArUco codes with different scales are employed. Then, the landing marker is captured and processed by a camera mounted below the UAV body. Using the efficient perspective-n-point method, the position and attitude of the UAV are estimated and further fused by the Kalman filter, which improves the estimation accuracy and stability. On this basis, LADRC is used for UAV landing control, in which an extended state observer with adjustable bandwidth is employed to evaluate disturbance and proportional-derivative control is adopted to eliminate control error. The results of simulations and experiments demonstrate the feasibility and effectiveness of the proposed method, which provides an effective solution for the autonomous recovery of unmanned systems.

摘要

由于环境复杂,无人机自主降落在无人水面舰艇(USV)上是一项关键任务。为解决这一问题,本研究提出了一种基于多级标记和线性自抗扰控制(LADRC)的自主着陆方法。在无人水面舰艇上放置了一块专门设计的着陆板,并采用了不同尺度的ArUco码。然后,由安装在无人机机身下方的摄像头捕获并处理着陆标记。利用高效的透视n点法估计无人机的位置和姿态,并通过卡尔曼滤波器进一步融合,提高了估计精度和稳定性。在此基础上,采用LADRC进行无人机着陆控制,其中采用带宽可调的扩张状态观测器来评估干扰,并采用比例微分控制来消除控制误差。仿真和实验结果验证了该方法的可行性和有效性,为无人系统的自主回收提供了一种有效的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87fc/10935343/eff703b9f51b/sensors-24-01645-g001.jpg

相似文献

3
Research on Aerial Autonomous Docking and Landing Technology of Dual Multi-Rotor UAV.
Sensors (Basel). 2022 Nov 22;22(23):9066. doi: 10.3390/s22239066.
4
UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
Sensors (Basel). 2020 Oct 1;20(19):5630. doi: 10.3390/s20195630.
7
Auto-landing of fixed wing unmanned aerial vehicles using the backstepping control.
ISA Trans. 2019 Dec;95:194-210. doi: 10.1016/j.isatra.2019.05.019. Epub 2019 May 29.
8
Visual Navigation and Landing Control of an Unmanned Aerial Vehicle on a Moving Autonomous Surface Vehicle via Adaptive Learning.
IEEE Trans Neural Netw Learn Syst. 2021 Dec;32(12):5345-5355. doi: 10.1109/TNNLS.2021.3080980. Epub 2021 Nov 30.
9
Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
Sensors (Basel). 2017 Aug 30;17(9):1987. doi: 10.3390/s17091987.
10
Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles.
Sensors (Basel). 2019 Aug 3;19(15):3410. doi: 10.3390/s19153410.

本文引用的文献

1
Cooperative USV-UAV marine search and rescue with visual navigation and reinforcement learning-based control.
ISA Trans. 2023 Jun;137:222-235. doi: 10.1016/j.isatra.2023.01.007. Epub 2023 Jan 26.
3
Research on Aerial Autonomous Docking and Landing Technology of Dual Multi-Rotor UAV.
Sensors (Basel). 2022 Nov 22;22(23):9066. doi: 10.3390/s22239066.
4
Landing System Development Based on Inverse Homography Range Camera Fusion (IHRCF).
Sensors (Basel). 2022 Feb 27;22(5):1870. doi: 10.3390/s22051870.
5
Autonomous Quadcopter Landing on a Moving Target.
Sensors (Basel). 2022 Feb 1;22(3):1116. doi: 10.3390/s22031116.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验