School of Automation, Southeast University, Nanjing 210096, China; Peng Cheng Laboratory, Shenzhen 518000, China.
School of Artificial Intelligence, Anhui University, Hefei 230039, China; Peng Cheng Laboratory, Shenzhen 518000, China.
ISA Trans. 2023 Jun;137:222-235. doi: 10.1016/j.isatra.2023.01.007. Epub 2023 Jan 26.
This paper investigates visual navigation and control of a cooperative unmanned surface vehicle (USV)-unmanned aerial vehicle (UAV) system for marine search and rescue. First, a deep learning-based visual detection architecture is developed to extract positional information from the images taken by the UAV. With specially designed convolutional layers and spatial softmax layers, the visual positioning accuracy and computational efficiency are improved. Next, a reinforcement learning-based USV control strategy is proposed, which could learn a motion control policy with an enhanced ability to reject wave disturbances. The simulation experiment results show that the proposed visual navigation architecture can provide stable and accurate position and heading angle estimation in different weather and lighting conditions. The trained control policy also demonstrates satisfactory USV control ability under wave disturbances.
本文研究了用于海上搜救的协同无人水面艇(USV)-无人飞行器(UAV)系统的视觉导航和控制。首先,开发了一种基于深度学习的视觉检测架构,用于从 UAV 拍摄的图像中提取位置信息。通过专门设计的卷积层和空间 softmax 层,提高了视觉定位精度和计算效率。接下来,提出了一种基于强化学习的 USV 控制策略,该策略可以学习具有增强抗波浪干扰能力的运动控制策略。仿真实验结果表明,所提出的视觉导航架构可以在不同的天气和光照条件下提供稳定和准确的位置和航向角估计。经过训练的控制策略也在波浪干扰下展示了令人满意的 USV 控制能力。