Suppr超能文献

通过多层大语言模型增强机器人任务规划与执行

Enhancing Robot Task Planning and Execution through Multi-Layer Large Language Models.

作者信息

Luan Zhirong, Lai Yujun, Huang Rundong, Bai Shuanghao, Zhang Yuedi, Zhang Haoran, Wang Qian

机构信息

School of Electrical Engineering, Xi'an University of Technology, Xi'an 710000, China.

College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an 710000, China.

出版信息

Sensors (Basel). 2024 Mar 6;24(5):1687. doi: 10.3390/s24051687.

Abstract

Large language models have found utility in the domain of robot task planning and task decomposition. Nevertheless, the direct application of these models for instructing robots in task execution is not without its challenges. Limitations arise in handling more intricate tasks, encountering difficulties in effective interaction with the environment, and facing constraints in the practical executability of machine control instructions directly generated by such models. In response to these challenges, this research advocates for the implementation of a multi-layer large language model to augment a robot's proficiency in handling complex tasks. The proposed model facilitates a meticulous layer-by-layer decomposition of tasks through the integration of multiple large language models, with the overarching goal of enhancing the accuracy of task planning. Within the task decomposition process, a visual language model is introduced as a sensor for environment perception. The outcomes of this perception process are subsequently assimilated into the large language model, thereby amalgamating the task objectives with environmental information. This integration, in turn, results in the generation of robot motion planning tailored to the specific characteristics of the current environment. Furthermore, to enhance the executability of task planning outputs from the large language model, a semantic alignment method is introduced. This method aligns task planning descriptions with the functional requirements of robot motion, thereby refining the overall compatibility and coherence of the generated instructions. To validate the efficacy of the proposed approach, an experimental platform is established utilizing an intelligent unmanned vehicle. This platform serves as a means to empirically verify the proficiency of the multi-layer large language model in addressing the intricate challenges associated with both robot task planning and execution.

摘要

大语言模型已在机器人任务规划和任务分解领域展现出实用价值。然而,将这些模型直接应用于指导机器人执行任务并非毫无挑战。在处理更复杂的任务时会出现局限性,在与环境进行有效交互方面会遇到困难,并且在直接由此类模型生成的机器控制指令的实际可执行性方面面临限制。针对这些挑战,本研究主张实施多层大语言模型,以提高机器人处理复杂任务的能力。所提出的模型通过整合多个大语言模型,促进任务的细致分层分解,其总体目标是提高任务规划的准确性。在任务分解过程中,引入视觉语言模型作为环境感知的传感器。该感知过程的结果随后被整合到大型语言模型中,从而将任务目标与环境信息融合在一起。这种整合进而导致生成针对当前环境特定特征的机器人运动规划。此外,为了提高大语言模型任务规划输出的可执行性,引入了一种语义对齐方法。该方法将任务规划描述与机器人运动的功能要求对齐,从而完善生成指令的整体兼容性和连贯性。为了验证所提出方法的有效性,利用智能无人车辆建立了一个实验平台。该平台作为一种手段,用于实证验证多层大语言模型在应对与机器人任务规划和执行相关的复杂挑战方面的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1b9/10935292/a57d319d72d3/sensors-24-01687-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验