Suppr超能文献

使用 SINS 预测骨骼相关事件。

Predicting Skeletal-related Events Using SINS.

机构信息

Department of Bone and Joint Surgery, Kawasaki Medical School, Matsushima, Kurashiki, Okayama.

Department of Community Medicine, Kyoto University, Section of Clinical Epidemiology, Shogoin Kawaramachi, Sakyo-ku, Kyoto, Japan.

出版信息

Spine (Phila Pa 1976). 2024 Nov 15;49(22):E367-E371. doi: 10.1097/BRS.0000000000004983. Epub 2024 Mar 13.

Abstract

STUDY DESIGN

Predictive study utilized retrospectively collected data.

OBJECTIVE

The primary objective was to evaluate the predictive association between the Spine Instability Neoplastic Score (SINS) and Skeletal-related events (SREs). Secondary objectives included examining characteristics of cases with SINS ≤ 6 among those who developed SRE and evaluating the impact of additional predictors on prediction accuracy.

SUMMARY OF BACKGROUND DATA

Advances in cancer treatment have prolonged the lives of cancer patients, emphasizing the importance of maintaining quality of life. SREs from metastatic spinal tumors significantly impact the quality of life. However, currently, there is no scientifically established method to predict the occurrence of SRE. SINS, developed by the Spine Oncology Study Group, assesses spinal instability using six categories. Therefore, the predictive performance of SINS for SRE occurrence is of considerable interest to clinicians.

METHODS

This predictive study utilized retrospectively collected data from a single-center registry comprising over 1000 patients with metastatic spinal tumors. SINS and clinical data were collected. Logistic regression was used to create a prediction equation for SRE using SINS. Additional analyses explored factors associated with SRE in patients with SINS ≤ 6.

RESULTS

The study included 1041 patients with metastatic spinal tumors. SRE occurred in 121 cases (12%). The prediction model for SRE using SINS demonstrated an area under the curve (AUC) of 0.832. Characteristics associated with SRE included lower female prevalence, surgeries to primary sites, bone metastases to nonspinal sites, and metastases to other organs. A post hoc analysis incorporating additional predictors improved the AUC to 0.865.

CONCLUSIONS

The SINS demonstrated reasonable predictive performance for SRE within one month of the initial visit. Incorporating additional factors improved prediction accuracy. The study emphasizes the need for a comprehensive clinical prediction model for SRE in metastatic spinal tumors.

摘要

研究设计

预测性研究利用回顾性收集的数据。

目的

主要目的是评估脊柱不稳定肿瘤评分(SINS)与骨骼相关事件(SRE)之间的预测关联。次要目标包括检查在发生 SRE 的患者中 SINS≤6 的病例的特征,并评估额外预测因子对预测准确性的影响。

背景数据概要

癌症治疗的进步延长了癌症患者的生命,强调了维持生活质量的重要性。转移性脊柱肿瘤的 SRE 会显著影响生活质量。然而,目前尚无科学确立的方法来预测 SRE 的发生。脊柱肿瘤研究组开发的 SINS 通过六个类别评估脊柱不稳定情况。因此,SINS 对 SRE 发生的预测性能对临床医生具有相当大的兴趣。

方法

本预测性研究利用来自一个单一中心登记处的回顾性收集数据,该登记处包含超过 1000 例患有转移性脊柱肿瘤的患者。收集了 SINS 和临床数据。使用逻辑回归创建了一个使用 SINS 预测 SRE 的预测方程。额外的分析探讨了 SINS≤6 的患者中与 SRE 相关的因素。

结果

该研究纳入了 1041 例患有转移性脊柱肿瘤的患者。121 例患者发生了 SRE(12%)。使用 SINS 预测 SRE 的模型曲线下面积(AUC)为 0.832。与 SRE 相关的特征包括女性患病率较低、原发部位手术、非脊柱部位骨转移和其他器官转移。纳入额外预测因子的事后分析将 AUC 提高至 0.865。

结论

SINS 在初始就诊后一个月内对 SRE 具有合理的预测性能。纳入额外的因素提高了预测准确性。该研究强调了在转移性脊柱肿瘤中需要建立全面的 SRE 临床预测模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验