Suppr超能文献

使用嗜酸性粒细胞水平以外的常规生物标志物的综合列线图:提高慢性阻塞性肺疾病急性加重期皮质类固醇治疗结果的可预测性

Comprehensive Nomograms Using Routine Biomarkers Beyond Eosinophil Levels: Enhancing Predictability of Corticosteroid Treatment Outcomes in AECOPD.

作者信息

Feng Lin, Li Jiachen, Qian Zhenbei, Li Chenglong, Gao Darui, Wang Yongqian, Xie Wuxiang, Cai Yutong, Tong Zhaohui, Liang Lirong

机构信息

Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.

Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.

出版信息

J Inflamm Res. 2024 Mar 8;17:1511-1526. doi: 10.2147/JIR.S450447. eCollection 2024.

Abstract

PURPOSE

Patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) exhibit heterogeneous responses to corticosteroid treatment. We aimed to determine whether combining eosinophil levels with other routine clinical indicators can enhance the predictability of corticosteroid treatment outcomes and to come up with a scoring system.

PATIENTS AND METHODS

Consecutive patients admitted with AECOPD receiving corticosteroid treatment between July 2013 and March 2022 at Beijing Chao-Yang Hospital were retrospectively analyzed. Data on patients' demographics, smoking status, hospitalization for AECOPD in the previous year, comorbidities, blood laboratory tests, in-hospital treatment and clinical outcomes were collected. Least absolute shrinkage and selection operator (LASSO) regression and backward logistic regression were used for predictor selection, and predictive nomograms were developed. The discrimination and calibration of the nomograms were assessed using the area under the receiver operating curve (AUC) and calibration plots. Internal validation was performed using the 500-bootstrap method, and clinical utility was evaluated using decision curve analysis (DCA).

RESULTS

Among the 3254 patients included, 804 (24.7%) had treatment failure. A nomogram of eosinophils, platelets, C-reactive protein (CRP), low density lipoprotein cholesterol, prognostic nutritional index (PNI), hospitalization for AECOPD in the previous year, ischemic heart diseases and chronic hepatic disease was developed to predict treatment failure for patients with a smoking history. For patients without a smoking history, a nomogram of CRP, PNI, ischemic heart diseases and chronic hepatic disease was developed. Although the AUCs of these two nomograms were only 0.644 and 0.647 respectively, they were significantly superior to predictions based solely on blood eosinophil levels.

CONCLUSION

We developed easy-to-use comprehensive nomograms utilizing readily available clinical biomarkers related to inflammation, nutrition and immunity, offering modestly enhanced predictive value for treatment outcomes in corticosteroid-treated patients with AECOPD. Further investigations into novel biomarkers and additional patient data are imperative to optimize the predictive performance.

摘要

目的

慢性阻塞性肺疾病急性加重期(AECOPD)患者对皮质类固醇治疗表现出异质性反应。我们旨在确定将嗜酸性粒细胞水平与其他常规临床指标相结合是否能提高皮质类固醇治疗结果的可预测性,并提出一种评分系统。

患者与方法

回顾性分析2013年7月至2022年3月在北京朝阳医院接受皮质类固醇治疗的连续入院AECOPD患者。收集患者的人口统计学数据、吸烟状况、上一年因AECOPD住院情况、合并症、血液实验室检查、住院治疗及临床结局。采用最小绝对收缩和选择算子(LASSO)回归及向后逻辑回归进行预测指标选择,并绘制预测列线图。使用受试者操作特征曲线下面积(AUC)和校准图评估列线图的辨别力和校准度。采用500次自抽样法进行内部验证,并使用决策曲线分析(DCA)评估临床实用性。

结果

在纳入的3254例患者中,804例(24.7%)治疗失败。绘制了嗜酸性粒细胞、血小板、C反应蛋白(CRP)、低密度脂蛋白胆固醇、预后营养指数(PNI)、上一年因AECOPD住院情况、缺血性心脏病和慢性肝病的列线图,以预测有吸烟史患者的治疗失败情况。对于无吸烟史的患者,绘制了CRP、PNI、缺血性心脏病和慢性肝病的列线图。尽管这两个列线图的AUC分别仅为0.644和0.647,但它们明显优于仅基于血液嗜酸性粒细胞水平的预测。

结论

我们利用与炎症、营养和免疫相关的现成临床生物标志物开发了易于使用的综合列线图,为接受皮质类固醇治疗的AECOPD患者的治疗结果提供了适度提高的预测价值。进一步研究新型生物标志物和更多患者数据对于优化预测性能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56c/10929658/6ec417e54ee6/JIR-17-1511-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验