Medical Science, Kawasaki Medical School, Kurashiki, Okayama, Japan.
College of Engineering, University of Michigan, Ann Arbor, Michigan, United states of America.
PLoS One. 2024 Mar 13;19(3):e0297389. doi: 10.1371/journal.pone.0297389. eCollection 2024.
There are cases in which CKD progression is difficult to evaluate, because the changes in estimated glomerular filtration rate (eGFR) and proteinuria sometimes show opposite directions as CKD progresses. Indices and models that enable the easy and accurate risk prediction of end-stage-kidney disease (ESKD) are indispensable to CKD therapy. In this study, we investigated whether a CKD stage coordinate transformed into a vector field (CKD potential model) accurately predicts ESKD risk. Meta-analysis of large-scale cohort studies of CKD patients in PubMed was conducted to develop the model. The distance from CKD stage G2 A1 to a patient's data on eGFR and proteinuria was defined as r. We developed the CKD potential model on the basis of the data from the meta-analysis of three previous cohort studies: ESKD risk = exp(r). Then, the model was validated using data from a cohort study of CKD patients in Japan followed up for three years (n = 1,564). Moreover, the directional derivative of the model was developed as an index of CKD progression velocity. For ESKD prediction in three years, areas under the receiver operating characteristic curves (AUCs) were adjusted for baseline characteristics. Cox proportional hazards models with spline terms showed the exponential association between r and ESKD risk (p<0.0001). The CKD potential model more accurately predicted ESKD with an adjusted AUC of 0.81 (95% CI 0.76, 0.87) than eGFR (p<0.0001). Moreover, the directional derivative of the model showed a larger adjusted AUC for the prediction of ESKD than the percent eGFR change and eGFR slope (p<0.0001). Then, a chart of the transformed CKD stage was developed for implementation in clinical settings. This study indicated that the transformed CKD stage as a vector field enables the easy and accurate estimation of ESKD risk and CKD progression and suggested that vector analysis is a useful tool for clinical studies of CKD and its related diseases.
在某些情况下,CKD 的进展难以评估,因为估算肾小球滤过率(eGFR)和蛋白尿的变化有时随着 CKD 的进展而呈现相反的方向。对于 CKD 治疗,能够方便准确地预测终末期肾病(ESKD)风险的指标和模型是不可或缺的。在这项研究中,我们研究了将 CKD 分期转换为向量场(CKD 潜能模型)是否能准确预测 ESKD 风险。通过对 PubMed 中 CKD 患者的大型队列研究进行荟萃分析来开发模型。以患者的 eGFR 和蛋白尿数据与 CKD 阶段 G2 A1 的距离 r 来定义。我们基于对三项之前的队列研究的荟萃分析数据来开发 CKD 潜能模型:ESKD 风险=exp(r)。然后,使用日本 CKD 患者队列研究的三年随访数据进行模型验证(n=1564)。此外,还开发了模型的方向导数作为 CKD 进展速度的指标。对于三年的 ESKD 预测,调整基线特征后,接收者操作特征曲线下面积(AUC)。具有样条项的 Cox 比例风险模型显示 r 与 ESKD 风险之间存在指数关联(p<0.0001)。与 eGFR(p<0.0001)相比,CKD 潜能模型对 ESKD 的预测具有更高的调整 AUC,为 0.81(95%CI 0.76,0.87)。此外,模型的方向导数在预测 ESKD 方面的调整 AUC 大于 eGFR 变化百分比和 eGFR 斜率(p<0.0001)。然后,为了在临床环境中实施,开发了转换后的 CKD 分期图表。这项研究表明,作为向量场的转换后的 CKD 分期可以方便准确地估计 ESKD 风险和 CKD 进展,并表明向量分析是 CKD 及其相关疾病临床研究的有用工具。